Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Limit PYQ


Jamia Millia Islamia PYQ
Let $f(t) = \begin{vmatrix} \cos t & 1 & 1 \\ 2\sin t & 2t & 1 \\ \sin t & t & t \end{vmatrix}$, then $\displaystyle \lim_{t \to 0}\dfrac{f(t)}{t^2}$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Expand the determinant using first row: $f(t) = \cos t \begin{vmatrix} 2t & 1 \\ t & t \end{vmatrix} - 1 \begin{vmatrix} 2\sin t & 1 \\ \sin t & t \end{vmatrix} + 1 \begin{vmatrix} 2\sin t & 2t \\ \sin t & t \end{vmatrix}$ Simplify and expand around $t \to 0$ using $\sin t \approx t$ and $\cos t \approx 1 - t^2/2$. After simplification, $\dfrac{f(t)}{t^2} \to 3$. $\boxed{\text{Answer: (D) 3}}$

Jamia Millia Islamia PYQ
For $x \in \mathbb{R}$, find $\displaystyle \lim_{x \to \infty} \left(\dfrac{x - 3}{x + 2}\right)^x = ?$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Let $L = \left(\dfrac{x - 3}{x + 2}\right)^x = \left(1 - \dfrac{5}{x + 2}\right)^x.$ Take $\ln L = x \ln\!\left(1 - \dfrac{5}{x + 2}\right).$ For large $x$, use $\ln(1 - y) \approx -y$. So, $\ln L \approx x \left(-\dfrac{5}{x + 2}\right) \to -5.$ Hence, $L = e^{-5}.$

Jamia Millia Islamia PYQ
$\displaystyle \lim_{x\to0}\frac{1-\cos x}{x^{2}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Standard limit: $\frac{1-\cos x}{x^{2}}\to \frac12$.

Jamia Millia Islamia PYQ
$\displaystyle \lim_{x\to\infty}\Big(x-\sqrt{x^{2}+x}\,\Big)$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sqrt{x^{2}+x}=x\sqrt{1+1/x}=x\left(1+\tfrac{1}{2x}+o(1/x)\right)=x+\tfrac12+o(1)$. Hence limit $=x-(x+\tfrac12)= -\tfrac12$.

Jamia Millia Islamia PYQ
What will be the limiting value of $f(x)=|x|-5$ when $x \to 5$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

$\lim_{x \to 5} (|x|-5) = |5|-5 = 5-5 = 0.$

Jamia Millia Islamia PYQ
$\displaystyle \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

his is the derivative of $\sin x-\cos x$ at $x=\frac{\pi}{4}$. $\,(\sin x-\cos x)'=\cos x+\sin x \Rightarrow \cos\frac{\pi}{4}+\sin\frac{\pi}{4} =\tfrac{\sqrt2}{2}+\tfrac{\sqrt2}{2}=\sqrt2.$

Jamia Millia Islamia PYQ
$\displaystyle \lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\sqrt{x}$ at $x$: $\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}.$

Jamia Millia Islamia PYQ
If $\displaystyle \lim_{x \to a} \frac{x^{\alpha} - x^{a}}{x - a} = -1$, then $\alpha$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Limit $\Rightarrow \dfrac{d}{dx}x^{\alpha}=\alpha x^{\alpha-1}$. At $x=a$, $\alpha a^{\alpha-1}=-1$. If $a=1$, $\alpha=-1$.

Jamia Millia Islamia PYQ
$\displaystyle \lim_{x\to a}\frac{x^{10}-a^{10}}{x^{2}-a^{2}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Using L’Hôpital’s rule or factorization, $\dfrac{10a^{9}}{2a}=5a^{8}$.

Jamia Millia Islamia PYQ
$\displaystyle \lim_{x\to1}\frac{x+x^{2}+\ldots+x^{10}-10}{5x-5}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Let $f(x)=x+x^{2}+\ldots+x^{10}-10$. Then $f'(x)=1+2x+3x^{2}+\ldots+10x^{9}$. At $x=1$, $f'(1)=1+2+3+\ldots+10=55$. Hence limit $=\dfrac{f'(1)}{5}=\dfrac{55}{5}=11$.

Jamia Millia Islamia PYQ
What will the following evaluate to? $\displaystyle \lim_{x \to 4} \left(\frac{4x+3}{x-2}\right)$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Direct substitution (function is continuous at $x=4$): $\displaystyle \frac{4(4)+3}{4-2} = \frac{16+3}{2} = \frac{19}{2}$

Jamia Millia Islamia PYQ
What is $\displaystyle \lim_{x\to 0}\left(\frac{x\tan x}{\cot x}\right)$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$\tan x\sim x,\ \cot x\sim \frac1x \Rightarrow \dfrac{x\tan x}{\cot x}\sim \dfrac{x\cdot x}{1/x}=x^3\to0.$

Jamia Millia Islamia PYQ
Evaluate $\displaystyle \lim_{x\to 0}\left\lfloor \frac{\sin x}{x}\right\rfloor$, where $[;]$ denotes the greatest-integer function.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$\dfrac{\sin x}{x}=1-\dfrac{x^2}{6}+O(x^4)<1$ for $x\ne0$ near $0$, and $>0$. So $\left\lfloor \dfrac{\sin x}{x}\right\rfloor=0$ in a punctured neighborhood of $0$.

Jamia Millia Islamia PYQ
Evaluate $\displaystyle \lim_{x\to 0}\frac{\sqrt{1-\cos 2x}}{x}$.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$1-\cos 2x=2\sin^2 x \Rightarrow \dfrac{\sqrt{1-\cos 2x}}{x}=\sqrt{2},\dfrac{|\sin x|}{x}$. As $x\to0^+$, this $\to\sqrt{2}$; as $x\to0^-$, it $\to -\sqrt{2}$. Thus two-sided limit does not exist; the right-hand limit is $\sqrt{2}$.

Jamia Millia Islamia PYQ
If $\displaystyle \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2$, then values of $a$ and $b$ are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let $\ln L = 2x \ln\left(1 + \frac{a}{x} + \frac{b}{x^2}\right)$ Using expansion $\ln(1+z) = z - \frac{z^2}{2} + \dots$ $\ln L = 2x\left(\frac{a}{x} + \frac{b}{x^2} - \frac{a^2}{2x^2}\right)$ $= 2a + \frac{2(b - a^2/2)}{x} + \dots$ As $x \to \infty$, $\ln L \to 2a$ Given $\ln L = 2 \Rightarrow 2a = 2 \Rightarrow a = 1$. Hence, $b$ can be any real number.

Jamia Millia Islamia PYQ
Given that limit exists, find $\displaystyle \lim_{(x,y,z)\to(-2,-2,-2)} \frac{\sin((x+2)(y+5)(z+1))}{(x+2)(y+7)}$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Using $\sin t / t \to 1$, limit $=1$.

Jamia Millia Islamia PYQ
Which of the following is not an indeterminate form?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Indeterminate forms: $0^0, \infty^0, 1^\infty$. $1^0$ is determinate (equals 1).


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...