A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
2
If $\displaystyle \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2$,
then values of $a$ and $b$ are:
Solution
Let $\ln L = 2x \ln\left(1 + \frac{a}{x} + \frac{b}{x^2}\right)$
Using expansion $\ln(1+z) = z - \frac{z^2}{2} + \dots$
$\ln L = 2x\left(\frac{a}{x} + \frac{b}{x^2} - \frac{a^2}{2x^2}\right)$
$= 2a + \frac{2(b - a^2/2)}{x} + \dots$
As $x \to \infty$, $\ln L \to 2a$
Given $\ln L = 2 \Rightarrow 2a = 2 \Rightarrow a = 1$.
Hence, $b$ can be any real number.
Online Test Series, Information About Examination, Syllabus, Notification and More.