Let $L = \left(\dfrac{x - 3}{x + 2}\right)^x
= \left(1 - \dfrac{5}{x + 2}\right)^x.$
Take $\ln L = x \ln\!\left(1 - \dfrac{5}{x + 2}\right).$
For large $x$, use $\ln(1 - y) \approx -y$.
So, $\ln L \approx x \left(-\dfrac{5}{x + 2}\right) \to -5.$
Hence, $L = e^{-5}.$
Online Test Series, Information About Examination, Syllabus, Notification and More.