Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Let $f(t) = \begin{vmatrix} \cos t & 1 & 1 \\ 2\sin t & 2t & 1 \\ \sin t & t & t \end{vmatrix}$, then $\displaystyle \lim_{t \to 0}\dfrac{f(t)}{t^2}$ is equal to:





Solution

Expand the determinant using first row: $f(t) = \cos t \begin{vmatrix} 2t & 1 \\ t & t \end{vmatrix} - 1 \begin{vmatrix} 2\sin t & 1 \\ \sin t & t \end{vmatrix} + 1 \begin{vmatrix} 2\sin t & 2t \\ \sin t & t \end{vmatrix}$ Simplify and expand around $t \to 0$ using $\sin t \approx t$ and $\cos t \approx 1 - t^2/2$. After simplification, $\dfrac{f(t)}{t^2} \to 3$. $\boxed{\text{Answer: (D) 3}}$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...