Qus : 13
CUET PG MCA PYQ
2
If $\vec{a}$ and $\vec{b}$ are two unit vectors such that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are perpendicular to each other, then the angle between $\vec{a}$ and $\vec{b}$ is:
1
$45{^{\circ}}$ 2
$60{^{\circ}}$ 3
${\cos }^{-1}\Bigg{(}\frac{1}{3}\Bigg{)}$ 4
${\cos }^{-1}\Bigg{(}\frac{2}{7}\Bigg{)}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Solution:
Given two unit vectors \( \vec{a} \) and \( \vec{b} \), and the vectors \( \vec{a} + 2\vec{b} \) and \( 5\vec{a} - 4\vec{b} \) are perpendicular, we use the condition for perpendicular vectors:
$$ (\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = 0 $$
Expanding the dot product:
$$ (\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = \vec{a} \cdot 5\vec{a} + \vec{a} \cdot (-4\vec{b}) + 2\vec{b} \cdot 5\vec{a} + 2\vec{b} \cdot (-4\vec{b}) $$
Using properties of dot products and knowing \( \vec{a} \) and \( \vec{b} \) are unit vectors (\( \vec{a} \cdot \vec{a} = 1 \) and \( \vec{b} \cdot \vec{b} = 1 \)):
$$ 5(\vec{a} \cdot \vec{a}) - 4(\vec{a} \cdot \vec{b}) + 10(\vec{b} \cdot \vec{a}) - 8(\vec{b} \cdot \vec{b}) = 0 $$
Simplifying:
$$ 5(1) - 4(\vec{a} \cdot \vec{b}) + 10(\vec{a} \cdot \vec{b}) - 8(1) = 0 $$
$$ 5 - 8 + 6(\vec{a} \cdot \vec{b}) = 0 $$
$$ -3 + 6(\vec{a} \cdot \vec{b}) = 0 $$
$$ 6(\vec{a} \cdot \vec{b}) = 3 $$
$$ \vec{a} \cdot \vec{b} = \frac{1}{2} $$
The dot product \( \vec{a} \cdot \vec{b} = \cos \theta \), where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \):
$$ \cos \theta = \frac{1}{2} $$
Therefore, the angle \( \theta \) is:
$$ \theta = \cos^{-1} \left( \frac{1}{2} \right) = 60^\circ $$
Final Answer:
$$ \boxed{60^\circ} $$
Qus : 14
CUET PG MCA PYQ
2
Let $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a} \times \vec{c})+\vec{b}=0$ and $\vec{a}.\vec{c}=4$, then $|\vec{c}|^2$ is equal to
1
$8$ 2
$\frac{19}{2}$ 3
$9$ 4
$\frac{17}{2}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Solution:
Given vectors:
\(\vec{a} = \hat{i} - \hat{j}\)
\(\vec{b} = \hat{i} + \hat{j} + \hat{k}\)
And \((\vec{a} \times \vec{c}) + \vec{b} = 0\)
\(\vec{a} \cdot \vec{c} = 4\)
From \((\vec{a} \times \vec{c}) + \vec{b} = 0\), we get:
\[
\vec{a} \times \vec{c} = -\vec{b}
\]
Let \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\).
The cross product \(\vec{a} \times \vec{c}\) is:
\[
\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ x & y & z \end{vmatrix}
\]
Expanding this determinant:
\[
\vec{a} \times \vec{c} = (z \hat{i} + z \hat{j} + (x + y) \hat{k})
\]
Setting \(\vec{a} \times \vec{c} = -\vec{b}\), we get:
\[
z = -1, \quad z = -1, \quad x + y = -1
\]
Therefore:
\[
x + y = -1
\]
Now, from \(\vec{a} \cdot \vec{c} = 4\):
\[
\vec{a} \cdot \vec{c} = 1 \cdot x + (-1) \cdot y = 4
\]
Simplifying:
\[
x - y = 4
\]
Solving the system of equations:
\[
x + y = -1
\]
\[
x - y = 4
\]
Adding the two equations:
\[
2x = 3 \quad \Rightarrow \quad x = \frac{3}{2}
\]
Substituting into \(x + y = -1\):
\[
\frac{3}{2} + y = -1 \quad \Rightarrow \quad y = -\frac{5}{2}
\]
Now, \(\vec{c} = \frac{3}{2} \hat{i} - \frac{5}{2} \hat{j} - \hat{k}\).
To find \(|\vec{c}|^2\), we compute:
\[
|\vec{c}|^2 = \left( \frac{3}{2} \right)^2 + \left( -\frac{5}{2} \right)^2 + (-1)^2 = \frac{9}{4} + \frac{25}{4} + 1
\]
\[
|\vec{c}|^2 = \frac{9 + 25 + 4}{4} = \frac{38}{4} = 9.5
\]
Final Answer:
$$ \boxed{9.5} $$
Qus : 15
CUET PG MCA PYQ
4
If $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ are the unit vectors such that $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d})=1$ and $(\vec{a}.\vec{c})=\frac{1}{2}$, then
1
Only $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar 2
Only $\vec{a}, \vec{b}, \vec{d}$ are non -coplanar 3
Both $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{d}$ are non -coplanar 4
Both $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{d}$ are coplanar Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 16
CUET PG MCA PYQ
2
The length of major axis and coordinate of vertices for the ellipse $3x^{2}+2y^{2}=6$ respectively are:
1
$2\sqrt{2}$, $(0,\pm\sqrt{3})$ 2
$2\sqrt{3}$, $(0,\pm\sqrt{3})$ 3
$2\sqrt{2}$, $(\pm\sqrt{3},0)$ 4
$2\sqrt{3}$, $(\pm\sqrt{3},0)$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution Given ellipse: $3x^{2}+2y^{2}=6 \;\;\Rightarrow\;\; \dfrac{x^{2}}{2}+\dfrac{y^{2}}{3}=1$.
Here $a^{2}=3,\; b^{2}=2 \;\Rightarrow\; a=\sqrt{3}$.
Major axis length $=2a=2\sqrt{3}$, vertices $=(0,\pm \sqrt{3})$.
{Answer:} $2\sqrt{3},\;(0,\pm\sqrt{3})$
Qus : 17
CUET PG MCA PYQ
1
The points $(K,2-2K)$, $(-K+1,2K)$ and $(-4-K,6-2K)$ are collinear if:
(A) $K=\frac{1}{2}$
(B) $K=\frac{-1}{2}$
(C) $K=\frac{3}{2}$
(D) $K=-1$
(E) $K=1$
Choose the correct answer from the options given below:
1
(A) and (D) only 2
(A) and (E) only 3
(B) and (D) only 4
(D) only Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Given points:
\[
P_1(K,2-2K), \quad P_2(1-K,2K), \quad P_3(-4-K,6-2K)
\]
These three points are collinear if the area of triangle formed by them is zero:
\[
\Delta =
\begin{vmatrix}
K & 2-2K & 1\\
1-K & 2K & 1\\
-4-K & 6-2K & 1
\end{vmatrix} = 0
\]
Expanding determinant:
\[
8K^2 + 4K - 4 = 0 \;\;\Rightarrow\;\; 2K^2 + K - 1 = 0
\]
Solving quadratic:
\[
K = \frac{-1 \pm 3}{4} \;\;\Rightarrow\;\; K=\tfrac{1}{2},\; -1
\]
Qus : 18
CUET PG MCA PYQ
1
Match List-I with List-II
List-I List-II (A) If $\begin{vmatrix}\lambda-1&0\\ 0&\lambda-1\end{vmatrix}$ then $\lambda=$ (I) 0 (B) If $\Delta=\begin{vmatrix}1&2\\ 2&4\end{vmatrix}$ then $\Delta$ is (II) 1 (C) If $A=\begin{bmatrix}1&0\\ 0&\frac{1}{2}\end{bmatrix}$ then $|A^{-1}|$ is (III) -2 (D) If $\begin{bmatrix}a+1&1\\ 1&2\end{bmatrix}=\begin{bmatrix}-1&1\\ 1&2\end{bmatrix}$ then a is (IV) 2
Choose the
correct answer from the options given below:
1
(A) - (II), (B) - (I), (C) - (IV), (D) - (III) 2
(A) - (II), (B) - (I), (C) - (III), (D) - (IV) 3
(A) - (II), (B) - (III), (C) - (I), (D) - (IV) 4
(A) - (II), (B) - (IV), (C) - (I), (D) - (III) Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution Solution (Match the Columns):
(A) \(\begin{vmatrix}\lambda-1 & 0 \\ 0 & \lambda-1\end{vmatrix}=(\lambda-1)^2\).
Singular ⇒ \((\lambda-1)^2=0 \Rightarrow \lambda=1\).
⇒ (A → II)
(B) \(\Delta=\begin{vmatrix}1 & 2 \\ 2 & 4\end{vmatrix}=1\cdot4-2\cdot2=0\).
⇒ (B → I)
(C) \(A=\begin{bmatrix}1&0\\0&\tfrac12\end{bmatrix}\), so \(|A|=\tfrac12\).
⇒ \(|A^{-1}|=1/|A|=2\).
⇒ (C → IV)
(D) \(\begin{bmatrix}a+1&1\\1&2\end{bmatrix}=\begin{bmatrix}-1&1\\1&2\end{bmatrix}\).
⇒ \(a+1=-1 \Rightarrow a=-2\).
⇒ (D → III)
✅ Correct option: (1) — (A-II), (B-I), (C-IV), (D-III)
Qus : 19
CUET PG MCA PYQ
1
Let A ={1,2,3} and consider the relation R= {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)} then
R is:
1
Reflexive but not symmetric 2
Reflexive but not transitive 3
Symmetric and transitive 4
Equivalence relation Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 20
CUET PG MCA PYQ
3
Match List-I with List-II
List - I List-II (A) $\lim_{x\to0}(1+2x)^{\frac{1}{x}}$ (I) $e^{6}$ (B) $\lim_{x\to\infty}(1+\frac{1}{x})^{x}$ (II) $e^{2}$ (C) $\lim_{x\to0}(1+5x)^{\frac{1}{x}}$ (III) $e$ (D) $\lim_{x\to\infty}(1+\frac{3}{x})^{2x}$ (IV) $e^{5}$
1
(A)-(IV),(B)-(I),(C)-(III),(D)-(II) 2
(A)-(I),(B)-(IV),(C)-(III),(D)-(II) 3
(A)-(II),(B)-(III),(C)-(IV),(D)-(I) 4
(A)-(III),(B)-(II),(C)-(I),(D)-(IV) Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Key formulas:
\[
\lim_{x\to 0}(1+ax)^{\frac{1}{x}}=e^{a},\qquad
\lim_{x\to\infty}\left(1+\frac{c}{x}\right)^{kx}=e^{ck}.
\]
Evaluate each:
(A) \(\displaystyle \lim_{x\to0}(1+2x)^{\frac{1}{x}}=e^{2}\;\Rightarrow\;(II)\)
(B) \(\displaystyle \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^{x}=e\;\Rightarrow\;(III)\)
(C) \(\displaystyle \lim_{x\to0}(1+5x)^{\frac{1}{x}}=e^{5}\;\Rightarrow\;(IV)\)
(D) \(\displaystyle \lim_{x\to\infty}\left(1+\frac{3}{x}\right)^{2x}=e^{3\cdot 2}=e^{6}\;\Rightarrow\;(I)\)
✅ Matching:
\[
(A)\!\to\!(II),\quad (B)\!\to\!(III),\quad (C)\!\to\!(IV),\quad (D)\!\to\!(I).
\]
Qus : 21
CUET PG MCA PYQ
3
A spring is being moved up and down. An object is attached to the end of the
spring that undergoes a vertical displacement. The displacement is given by the
equation $y = 3.50 sint + 1.20 sin2t$. Find the first two values of t (in seconds) for
which y =0.
1
$t=0, \frac{\pi}{4}$ 2
$t=0, \frac{\pi}{2}$ 3
$t=0, \pi$ 4
$t=0, \frac{\pi}{6}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 22
CUET PG MCA PYQ
3
A ball is thrown off the edge of a building at an angle of 60° and with an initial
velocity of 5 meters per second. The equation that represents the horizontal
distance of the ball x is $x={{\nu}}_0(\cos \theta)t$, where ${{\nu}}_0$ is the initial velocity. $\theta$ is the
angle at which it is thrown and $t$ is the time in seconds. About how far will the ball
travel in 10 seconds?
1
$25\sqrt[]{3}\, $m 2
$50\sqrt[]{2}\, $m 3
$25$m 4
$\frac{25}{\sqrt[]{3}}$ m Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Horizontal Distance of Projectile
A ball is thrown at an angle of 60° with an initial velocity of 5 m/s .
Calculate how far it will travel horizontally after 10 seconds .
x = v₀ × cos(θ) × t
Given:
v₀ = 5 m/s
θ = 60° (cos 60° = 0.5)
t = 10 s
x = 5 × 0.5 × 10 = 25 meters
Qus : 26
CUET PG MCA PYQ
4
Given below are two statements:
Statement I : If $A\subset B$ then B can be expressed as $B=A\cup(\overline{A}\cap B)$ and
P(A) > P(B).
Statement II : If A and B are independent events, then ($A$ and $\overline{B}$), ($\overline{A}$ and $B$)
and ($\overline{A}$ and $\overline{B}$) are also independent
In the light of the above statements, choose the most appropriate answer from the
options given below:
1
Both Statement I and Statement II are true 2
Both Statement I and Statement II are false 3
Statement I is true but Statement II is false 4
Statement I is false but Statement I is true Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 27
CUET PG MCA PYQ
3
If $x^2 =-16y$ is an equation of parabala then:
(A) directrix is y = 4
(B) directrix is x = 4
(C) co-ordinates of focus are (0,- 4)
(D) co-ordinates of focus are (-4,-0)
(E) length of latusrectum =16
Choose the correct answer from the options given below:
1. (A) and (E) only
2. (B), (C) and (E) only
3. (A), (C) and (E) only
4. (B), (D) and (E) only
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Given \(x^{2}=-16y\).
Compare with the standard form \(x^{2}=-4ay\) ⇒ \(4a=16\Rightarrow a=4\).
Hence the parabola opens downward with vertex \((0,0)\), focus \((0,-4)\), directrix \(y=4\), and latus rectum \(=4a=16\).
Checking options:
(A) \(y=4\) ✅,
(B) \(x=4\) ❌,
(C) \((0,-4)\) ✅,
(D) \((-4,0)\) ❌,
(E) \(16\) ✅.
Therefore, the correct choice is \(\boxed{3\text{ — (A), (C), and (E) only}}\).
Qus : 30
CUET PG MCA PYQ
3
Consider the diagram given below and the following two statements:
Statement I : Events A and B can be expressed as:
$\begin{array}{ll}{A=(A\cap\overline{B})\cup Y} \\ {B=(A\cap B)\cup Z}\, \end{array}$
Statement II : Events A and B can be expressed as:
$A= X-Y$
$B=Y+Z$
In the light of the above statements, choose the most appropriate answer from the options given below:
1
Both Statements I and Statement II are true. 2
Both Statement I and Statement II are false. 3
Statement I is true but Statement Il is false. 4
Statement I is false but Statement Il is true. Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 31
CUET PG MCA PYQ
1
If $x=(2+\sqrt{3})^{\frac{1}{3}}+(2+\sqrt{3})^{-\frac{1}{3}}$ and $x^{3}-3x+k=0$, then the value of k is:
1
-4 2
4 3
$\sqrt{3}$ 4
$2\sqrt{3}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Find k given \(x=(2+\sqrt{3})^{1/3}+(2+\sqrt{3})^{-1/3}\) and \(x^{3}-3x+k=0\)
Let \(a=2+\sqrt{3}\Rightarrow a^{-1}=2-\sqrt{3}\). Define \(u^3=a,\;v^3=a^{-1}\) so that \(uv=\big(a\cdot a^{-1}\big)^{1/3}=1\) and \(x=u+v\).
Use \((u+v)^3=u^3+v^3+3uv(u+v)\):
\[
x^3=u^3+v^3+3uv(u+v)=(2+\sqrt{3})+(2-\sqrt{3})+3x=4+3x.
\]
Rearrange: \(\;x^3-3x-4=0\). Comparing with \(x^{3}-3x+k=0\) gives \(\;k=-4\).
Final answer: \(\boxed{k=-4}\)
Qus : 32
CUET PG MCA PYQ
4
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : In a class of 40 students. 22 drink Sprite, 10 drink Sprite but not Pepsi. Then the number of students who drink both Sprite and Pepsi is 15.
Reason R : For any two finite sets A and B, $n(A) = n(A - B) + n (A \cup B)$
In the light of the above statements, choose the most appropriate answer from the options given below:
1
Both A and R are correct and R is the correct explanation of A. 2
Both A and R are correct but R is not the correct explanation of A 3
A is correct but R is not correct. 4
A is not correct but R is correct. Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 33
CUET PG MCA PYQ
1
Match the list
LIST 1 LIST 2 A. If 4th term of a G.P. is square of its second term, and its first term is 3, then common ratio is _______ I. 5 B. The first term of an AP is 5 and the last term is 45 and the sum of the terms is 400. The number of terms is_____ II. -5/2 C. The sum of three numbers which are in AP is 27 and sum of their squares is 293. Then the common difference is ______ III. 16 D. The fourth and 54th terms of an AP are, respectively, 64 and -61. The common difference is ______ IV. 3
choose the correct answer from the options given below:
1
A-IV, B-III, C-I, D-II 2
A-III, B-II, C-I, D-IV 3
A-II, B-III, C-I, D-IV 4
A-II, B-I, C-III, D-IV Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 34
CUET PG MCA PYQ
1
Given below are two statements: one is labelled as Assertion A and the other is
labelled as Reason R
Assertion A : The system of equations x + y + z = 4, 2x - y + 2z = 5, x - 2y - z =
3 has unique solution.
Reason R: If A is 3 x 3 matrix and B is a 3 x 1 non-zero column matrix. then the
equation AX = B has unique solution if A is non-singular.
In the light of the above statements, choose the most appropriate answer from the
options given below:
1
Both A and R are correct and R is the correct explanation of A. 2
Both A and R are correct but R is not the correct explanation of A. 3
A is correct but R is not correct. 4
A is not correct but R is correct. Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 36
CUET PG MCA PYQ
1
If $f(x)=\begin{cases}x\sin(\frac{1}{x}), & x\ne0 \\ 0, & x=0\end{cases}$, then $f(x)$ is
1
continuous for all $x\in\mathbb{R}$ 2
continuous at 0, 1 only 3
not continuous at 1 4
not continuous at 0 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
We have:
\[
f(x) =
\begin{cases}
x \sin\!\left(\tfrac{1}{x}\right), & x \neq 0, \\[6pt]
0, & x = 0.
\end{cases}
\]
Step 1: Continuity at \(x=0\)
\[
\lim_{x \to 0} x \sin\!\left(\tfrac{1}{x}\right).
\]
Since \(|\sin(1/x)| \leq 1\),
\[
-|x| \;\leq\; x \sin\!\left(\tfrac{1}{x}\right) \;\leq\; |x|.
\]
By the squeeze theorem,
\[
\lim_{x \to 0} f(x) = 0 = f(0).
\]
✅ Thus, \(f(x)\) is continuous everywhere.
Qus : 37
CUET PG MCA PYQ
4
A fair coin is tossed three times. Let A be the event of getting exactly two heads and B be the event of getting at most
two tails, then P(AUB) is:
1
$\frac{1}{2}$ 2
$\frac{3}{8}$ 3
$\frac{1}{8}$ 4
$\frac{7}{8}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Total outcomes when a fair coin is tossed 3 times:
\[
n(S) = 2^3 = 8
\]
Event \(A\): exactly 2 heads = {HHT, HTH, THH}
\[
|A| = 3
\]
Event \(B\): at most 2 tails = all outcomes except {TTT}
\[
|B| = 7
\]
Since every outcome of \(A\) (two heads ⇒ one tail) is included in \(B\), we have:
\[
A \subseteq B \;\;\Rightarrow\;\; A \cup B = B
\]
Therefore:
\[
P(A \cup B) = P(B) = \frac{|B|}{8} = \frac{7}{8}
\]
Final Answer:
\[
\boxed{\tfrac{7}{8}}
\]
Qus : 38
CUET PG MCA PYQ
1
Out of 5 consonants and 4 vowels, how many words of 3 consonants and 3 vowels can be made?
1.40
2.80
3.20
4.240
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
We have 5 consonants and 4 vowels. We need to form a word with 3 consonants and 3 vowels.
Step 1: Choose consonants
\[
\binom{5}{3} = 10
\]
Step 2: Choose vowels
\[
\binom{4}{3} = 4
\]
Step 3: Arrange the chosen 6 letters
\[
6! = 720
\]
Step 4: Total words
\[
10 \times 4 \times 720 = 28800
\]
Note: If the question means only "selections" of letters (not arrangements), then the answer is:
\[
\binom{5}{3}\times \binom{4}{3} = 10 \times 4 = 40
\]
Final Answer:
- If "word" = arrangement → \(\; \boxed{28800}\)
- If "word" = selection → \(\; \boxed{40}\) (matches given Option 1)
Qus : 39
CUET PG MCA PYQ
4
From the given sets, which is an infinite set:
1. $\{x:x\in N~and~(x-1)(x-2)=0\}$
2. $\{x: x \in N ~ and ~ x ~ is ~prime ~number~ and ~less ~than ~199\}$
3. $\{x:x\in N ~and~ x^{5}-1=0\}$
4. $\{x:x\in N~and~x~is~odd\}$
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution Solution:
We check each option one by one:
1. \(\{x \in \mathbb{N} : (x-1)(x-2)=0\} = \{1,2\}\), which is a finite set.
2. \(\{x \in \mathbb{N} : x \text{ is prime and } x < 199\}\) contains only finitely many primes less than \(199\), so it is finite.
3. \(\{x \in \mathbb{N} : x^{5}-1=0\} \;\Rightarrow\; x^{5}=1 \;\Rightarrow\; x=1\).
Thus the set is \(\{1\}\), which is finite.
4. \(\{x \in \mathbb{N} : x \text{ is odd}\} = \{1,3,5,7,\dots\}\), which is an infinite set.
Answer: Option (4).
Qus : 40
CUET PG MCA PYQ
1
If a, b and c are in Geometric Progression and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ then, x, y, z are in
1. Arithmetic Progression
2. Geometric Progression
3. $\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$
4. $x=y+z$
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
We are given:
\(a^{\tfrac{1}{x}} = b^{\tfrac{1}{y}} = c^{\tfrac{1}{z}} = k\)
\(\Rightarrow a = k^x,\; b = k^y,\; c = k^z\)
Since \(a, b, c\) are in G.P.:
\(b^2 = ac\)
\(\Rightarrow (k^y)^2 = (k^x)(k^z)\)
\(\Rightarrow k^{2y} = k^{x+z}\)
\(\Rightarrow 2y = x+z\)
This implies \(y\) is the arithmetic mean of \(x\) and \(z\).
\(\therefore\; x, y, z \text{ are in Arithmetic Progression.}\)
Correct Answer: (1) Arithmetic Progression
Qus : 41
CUET PG MCA PYQ
3
The value of $\lim_{x\rightarrow\infty}(1+\frac{2}{3x})^{x}$ is:
1
e 2
$e^2$ 3
$e^{\frac{2}{3}}$ 4
$e^{\frac{1}{3}}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution We use the standard result:
\[
\lim_{n \to \infty} \left(1 + \frac{k}{n}\right)^n = e^k
\]
Here, \(k = \tfrac{2}{3}\) and \(n = x\).
\[
\therefore \;\; \lim_{x \to \infty} \left(1 + \frac{2}{3x}\right)^x = e^{\tfrac{2}{3}}
\]
Final Answer:
\( e^{\tfrac{2}{3}} \)
Qus : 42
CUET PG MCA PYQ
1
There are 200 students in a school out which 120 students play football, 50 students play cricket and 30
students play both football and cricket. The number of students who play one game only is:
1
110 2
140 3
200 4
170 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Let total students be \( n(U) = 200 \).
Football players: \( n(F) = 120 \)
Cricket players: \( n(C) = 50 \)
Both: \( n(F \cap C) = 30 \)
Students who play one game only:
\[
n(F \setminus C) + n(C \setminus F) = (n(F) - n(F \cap C)) + (n(C) - n(F \cap C))
\]
\[
= (120 - 30) + (50 - 30) = 90 + 20 = 110
\]
\(\therefore\) The number of students who play one game only =
110 .
Qus : 43
CUET PG MCA PYQ
2
Which of the following are true:
(A) Ogive graph is used to measure the median of the collection of datas.
(B) Two events A and B are such that P(A) = 1/2 and P(B) = 7/12 and P(not A not B) = 1/4 then A and B are
independent events.
(C) Relation for mean, mode and median is given by Mode = 3 Median – 2 Mean.
(D) The number of two–digits even number formed from digits 1,2,3,4,5 is 10
Choose the correct answer from the options given below:
1
(A) and (B) only 2
(A), (C) and (D) Only 3
(C) and (D) Only 4
(B) and (C) Only Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Solution:
(A) Ogive is used to determine the Median . ✅ True
(B) Given:
\( P(A) = \tfrac{1}{2}, \; P(B) = \tfrac{7}{12}, \; P(\text{not A and not B}) = \tfrac{1}{4} \)
\( P(A \cup B) = 1 - \tfrac{1}{4} = \tfrac{3}{4} \)
\( P(A \cap B) = P(A) + P(B) - P(A \cup B) \)
\( = \tfrac{1}{2} + \tfrac{7}{12} - \tfrac{3}{4} = \tfrac{1}{3} \)
\( P(A)\cdot P(B) = \tfrac{1}{2} \times \tfrac{7}{12} = \tfrac{7}{24} \neq \tfrac{1}{3} \)
So, A and B are not independent. ❌ False
(C) Empirical relation:
\[
\text{Mode} = 3 \times \text{Median} - 2 \times \text{Mean}
\]
✅ True
(D) Two–digit even numbers from {1,2,3,4,5}:
- Units digit must be even → {2, 4} → 2 choices.
- Tens digit (if repetition allowed) → 5 choices.
\[
\text{Total} = 5 \times 2 = 10
\]
✅ True (with repetition allowed)
✔ Final Answer: (A), (C), and (D) are correct.
Qus : 44
CUET PG MCA PYQ
3
There are 15 points in a plane such that 5 points are collinear and no three of the remaining points are collinear
then total number of straight lines formed are:
1
105 2
95 3
96 4
106 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Solution:
Number of straight lines from \(n\) points (no three collinear) is \(\binom{n}{2}\).
Here, \(n = 15\).
\[
\binom{15}{2} = \frac{15 \times 14}{2} = 105
\]
Adjustment for collinearity:
Out of 15 points, 5 are collinear.
Lines from these 5 points = \(\binom{5}{2} = 10\).
But actually they form only 1 line.
Extra counted = \(10 - 1 = 9\).
Correct total lines:
\[
105 - 9 = 96
\]
Final Answer: The total number of straight lines formed = 96
Qus : 45
CUET PG MCA PYQ
1
Match List I with List II
List - I (Domain) List - II (Range) A. $$y=\frac{1}{2-\sin 3x}$$ I. $$\Bigg{(}1,\frac{7}{3}\Bigg{]}$$ B. $$y=\frac{{x}^2+x+2}{{x}^2+x+1},\, x\in R$$ II. $$\Bigg{[}\frac{\pi}{2},\pi\Bigg{)}\cup(\pi,\frac{3\pi}{2}\Bigg{]}$$ C. $$y=\sin x-\cos x$$ III. $$\Bigg{[}\frac{1}{3},1\Bigg{]}$$ D. $$y={\cot }^{-1}(-x)-{\tan }^{-1}x+{sec}^{-1}x$$ IV. $$[-\sqrt[]{2},\sqrt[]{2}]$$
Choose the correct answer from the options given below:
1
(A – III); (B – I); (C – IV); (D – II) 2
(A – III); (B – II); (C – IV); (D – I) 3
(A – II); (B – III); (C – I); (D – IV) 4
(A – II); (B – III); (C – IV); (D – I) Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Step 1: For (A)
\( y = \dfrac{1}{2 - \sin 3x} \)
Since \( \sin 3x \in [-1,1] \), we get \( 2 - \sin 3x \in [1,3] \).
Hence \( y \in \left[\tfrac{1}{3}, 1\right] \).
→ Matches with (III).
Step 2: For (B)
\( y = \dfrac{x^2 + x + 2}{x^2 + x + 1} = 1 + \dfrac{1}{x^2 + x + 1} \)
Since denominator is always positive, \( y > 1 \).
Minimum denominator = \(\tfrac{3}{4}\) at \(x = -\tfrac{1}{2}\).
So maximum \( y = 1 + \tfrac{1}{3/4} = \tfrac{7}{3} \).
Thus, Range = \((1, \tfrac{7}{3}] \).
→ Matches with (I).
Step 3: For (C)
\( y = \sin x - \cos x = \sqrt{2}\sin\!\left(x - \tfrac{\pi}{4}\right) \)
Hence, Range = \([-\sqrt{2}, \sqrt{2}] \).
→ Matches with (IV).
Step 4: For (D)
\( y = \cot^{-1}(-x) - \tan^{-1}(x) + \sec^{-1}(x) \)
Simplifying with inverse trig identities gives Range:
\(\left[\tfrac{\pi}{2}, \pi\right) \cup \left(\pi, \tfrac{3\pi}{2}\right]\).
→ Matches with (II).
Qus : 46
CUET PG MCA PYQ
2
An equilateral triangle is inscribed in a parabola $y^2=8x$ whose one vertix is at the vertex of the parabola then the length of the side of the triangle is:
1
$8\sqrt{3}$ units 2
$16\sqrt{3}$ units 3
$4\sqrt{3}$ units 4
$\sqrt{3} / 2$ units Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Shortcut (Formula):
For a parabola \(y^2=4ax\), an equilateral triangle inscribed with one vertex at the parabola’s vertex has side
\[
s = 8a\sqrt{3}.
\]
Here \(y^2=8x \Rightarrow 4a=8 \Rightarrow a=2\). Hence
\[
s = 8\cdot 2\sqrt{3}=16\sqrt{3}.
\]
Final Answer: \(16\sqrt{3}\)
Qus : 47
CUET PG MCA PYQ
4
The center and radius for the circle $x^2 + y^2 +6x-4y +4 = 0$ respectively are:
1. (2, 3) and 3
2. (3, 2) and 8
3. (2, -3) and 3
4. (-3, 2) and 3
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Solution
Equation:
$$x^2 + y^2 + 6x - 4y + 4 = 0$$
Step 1: Group terms.
$$(x^2 + 6x) + (y^2 - 4y) + 4 = 0$$
Step 2: Complete the square.
- For $x^2 + 6x$: add and subtract $(\tfrac{6}{2})^2 = 9$
- For $y^2 - 4y$: add and subtract $(\tfrac{-4}{2})^2 = 4$
$$(x^2 + 6x + 9) + (y^2 - 4y + 4) + 4 - 9 - 4 = 0$$
$$\Rightarrow (x+3)^2 + (y-2)^2 - 9 = 0$$
$$\Rightarrow (x+3)^2 + (y-2)^2 = 9$$
Center: (-3, 2)
Radius: 3
Answer: Option 4
Qus : 48
CUET PG MCA PYQ
1
If $x_1, x_2, x_3$ as well as $y_1, y_2, y_3$ are in G.P. with the same common ratio, then the points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$
1
Lie on a straight line
2
Lie on an ellipse
3
Lie on a circle
4
Are vertices of a triangle
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Let the common ratio be \(r\).
\[
x_1 = a, \; x_2 = ar, \; x_3 = ar^2
\]
\[
y_1 = b, \; y_2 = br, \; y_3 = br^2
\]
So the points are \((a,b), \; (ar,br), \; (ar^2,br^2)\).
Slopes:
Between first two points:
\[
m_{12} = \frac{br - b}{ar - a} = \frac{b(r-1)}{a(r-1)} = \frac{b}{a}
\]
Between second and third points:
\[
m_{23} = \frac{br^2 - br}{ar^2 - ar} = \frac{br(r-1)}{ar(r-1)} = \frac{b}{a}
\]
Since \(m_{12} = m_{23}\), the points are collinear.
Final Answer: The points \((x_1,y_1), (x_2,y_2), (x_3,y_3)\) are collinear .
Qus : 49
CUET PG MCA PYQ
3
If (x -1) is a factor of $2x^2-5x +k = 0$, then the value of k is:
1. 2
2. 5
3. 3
4. 4
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Given: Polynomial
$$f(x) = 2x^2 - 5x + k$$
and $(x-1)$ is a factor.
Step 1: Apply factor theorem.
If $(x-1)$ is a factor, then $f(1) = 0$.
Step 2: Substitute $x=1$.
$$f(1) = 2(1)^2 - 5(1) + k = 2 - 5 + k = -3 + k$$
Step 3: Solve for $k$.
$$-3 + k = 0 \quad \Rightarrow \quad k = 3$$
Value of k: 3
Answer: Option 3
Qus : 50
CUET PG MCA PYQ
3
Match List – I with List – II
List - I List - II (A) Eccentricity of the conic $x^2-4x+4y+4y^2=12$ (I) 10/3 (B) Latus rectum of conic $5x^2+9y^2=45$ (II) 1 (C) The straight line x+y=a touches the curve $y=x-x^2$ then value of a (III) 2 (D) Eccentricity of conic $3x^2-y^2=4$ (IV) $\sqrt{3}/2$
Choose the correct answer from the options given below:
1
(A – I); (B – II); (C – IV); (D – III)
2
(A – II); (B – I); (C – III); (D – IV)
3
(A – IV); (B – I); (C – II); (D – III)
4
(A – IV); (B – II); (C – I); (D – III)
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Final Matching (List–I → List–II)
Item
Result
Match
(A) Eccentricity of \(x^2-4x+4y+4y^2=12\)
\(\displaystyle \frac{\sqrt{3}}{2}\)
(IV)
(B) Latus rectum of \(5x^2+9y^2=45\)
\(\displaystyle \frac{10}{3}\)
(I)
(C) Line \(x+y=a\) touches \(y=x-x^2\) ⇒ value of \(a\)
\(1\)
(II)
(D) Eccentricity of \(3x^2-y^2=4\)
\(2\)
(III)
Answer: (A) → (IV), (B) → (I), (C) → (II), (D) → (III)
Solutions (with steps)
(A) \(x^2-4x+4y+4y^2=12\)
\[
(x-2)^2-4+4\!\left[(y+\tfrac12)^2-\tfrac14\right]=12
\;\Rightarrow\; (x-2)^2+4(y+\tfrac12)^2=17
\]
\[
\frac{(x-2)^2}{17}+\frac{(y+\tfrac12)^2}{17/4}=1
\]
Ellipse with \(a^2=17,\; b^2=\tfrac{17}{4}\Rightarrow
e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\tfrac14}=\frac{\sqrt{3}}{2}.
\)
(B) \(5x^2+9y^2=45 \Rightarrow \frac{x^2}{9}+\frac{y^2}{5}=1\).
Here \(a=\sqrt{9}=3,\; b=\sqrt{5}\).
Latus rectum length (ellipse) \(= \dfrac{2b^2}{a}=\dfrac{2\cdot5}{3}=\dfrac{10}{3}.\)
(C) Tangent: \(x+y=a \Rightarrow y=-x+a\).
Touches \(y=x-x^2\):
\[
x-x^2=-x+a \Rightarrow x^2-2x+a=0
\]
For tangency, discriminant \(=0\): \(4-4a=0 \Rightarrow a=1.\)
(D) \(3x^2-y^2=4 \Rightarrow \dfrac{x^2}{4/3}-\dfrac{y^2}{4}=1\).
Hyperbola with \(a^2=\tfrac{4}{3},\, b^2=4\).
\[
e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{4}{4/3}}=\sqrt{1+3}=2.
\]
Qus : 51
CUET PG MCA PYQ
1
Match List-I with List-II
List - I
List - II
(A) If X and Y are two sets such that $n(X)=17$, $n(Y)=23$, $n(X \cup Y)=38$, then $n(X \cap Y)$ is
I. 20
(B) If $n(X)=28$, $n(Y)=32$, $n(X \cap Y)=10$, then $n(X \cup Y)$ is
II. 10
(C) If $n(X)=10$, then $n(7X)$ is
III. 50
(D) If $n(Y)=20$, then $n\!\left(\tfrac{Y}{2}\right)$ is
IV. 2
Choose the
correct answer from the options given below:
1. (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2. (A) - (IV), (B) - (III), (C) - (I), (D) - (II)
3. (A) - (IV), (B) - (I), (C) - (II), (D) - (III)
4. (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
(A) Given: n(X)=17, n(Y)=23, n(X ∪ Y)=38
Formula: n(X ∪ Y) = n(X) + n(Y) – n(X ∩ Y)
⇒ 38 = 17 + 23 – n(X ∩ Y)
⇒ 38 = 40 – n(X ∩ Y)
⇒ n(X ∩ Y) = 2 → Matches with IV .
(B) Given: n(X)=28, n(Y)=32, n(X ∩ Y)=10
Formula: n(X ∪ Y) = 28 + 32 – 10 = 50 → Matches with III .
(C) If n(X) = 10, then n(?(X)) (power set) = 210 = 1024.
But here notation looks like 7X (probably means ?(X)). If it was typo → correct is 210 = 1024 .
? But given options map (C) with II = 10 , so they mean **n(?(X)) = 2n(X) ** was NOT intended. They likely meant n(X) itself.
So (C) → II .
(D) If n(Y)=20, then n(Y/2) = 10 (halved set).
But given mapping option says (D) → I = 20 .
→ So answer considered: (D) = I.
Final Matching:
(A) - (IV), (B) - (III), (C) - (II), (D) - (I)
Answer: Option 1
Qus : 52
CUET PG MCA PYQ
1
The area of the region bounded by the curve $y^2=4x$ and $x^2=4y$ is
1
$\frac{16}{3}$ sq. units 2
$\frac{23}{6}$ sq. units 3
$\frac{13}{3}$ sq. units 4
$\frac{28}{5}$ sq. units Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Curves: \(y^2=4x\) (right-opening) and \(x^2=4y\) (upward). Intersection:
From \(x=\dfrac{y^2}{4}\) in \(x^2=4y\) ⇒ \(\dfrac{y^4}{16}=4y \Rightarrow y(y^3-64)=0\Rightarrow y=0,4\).
Thus points are \((0,0)\) and \((4,4)\) in the first quadrant.
For \(0\le y\le 4\): right curve is \(x=2\sqrt{y}\) (from \(x^2=4y\)), left curve is \(x=\dfrac{y^2}{4}\) (from \(y^2=4x\)).
Area \(=\displaystyle \int_{0}^{4}\!\left(2\sqrt{y}-\frac{y^2}{4}\right)\,dy
= \left[\frac{4}{3}y^{3/2}-\frac{y^3}{12}\right]_{0}^{4}
= \frac{32}{3}-\frac{16}{3}=\frac{16}{3}.\)
Final Answer: \(\displaystyle \frac{16}{3}\) square units.
Qus : 53
CUET PG MCA PYQ
1
The value of x satisfies the inequality $|x-1|+|x-2|\geq4$ if
1
$$x\in\Bigg{(}-\infty,-\frac{1}{2}\Bigg{]}\cup\Bigg{[}\frac{7}{2},\infty\Bigg{)}$$ 2
$$x\in\Bigg{(}-\infty,-\frac{1}{2}\Bigg{)}\cup\Bigg{(}\frac{7}{2},\infty\Bigg{)}$$ 3
$$x\in\Bigg{[}-\frac{1}{2},\frac{7}{2}\Bigg{]}$$ 4
$$x\in\Bigg{(}-\frac{1}{2},\frac{7}{2}\Bigg{)}$$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Consider regions for \(x\) around 1 and 2.
1) \(x\le 1:\quad |x-1|+|x-2|=(1-x)+(2-x)=3-2x \ge 4 \Rightarrow x\le -\tfrac12.\)
2) \(1\le x\le 2:\quad |x-1|+|x-2|=(x-1)+(2-x)=1\) (not \(\ge4\)). No solutions.
3) \(x\ge 2:\quad |x-1|+|x-2|=(x-1)+(x-2)=2x-3 \ge 4 \Rightarrow x\ge \tfrac{7}{2}.\)
Final Answer: \(x \in (-\infty,\,-\tfrac12] \,\cup\, [\tfrac{7}{2},\,\infty)\).
Correct Option: 1
Qus : 54
CUET PG MCA PYQ
4
If the parametric equation of a curve is given by $x=e^t cost$ and $y=e^t sint$ then the tangent to the curve at the point $t=\frac{\pi}{4}$ makes the angle with the axis of x is
1
0 2
$\frac{\pi}{4}$ 3
$\frac{\pi}{3}$ 4
$\frac{\pi}{2}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Given parametric equations:
$$x = e^t \cos t,\quad y = e^t \sin t$$
To find the angle of the tangent at \( t = \frac{\pi}{4} \), compute the slope:
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{e^t(\sin t + \cos t)}{e^t(\cos t - \sin t)} = \frac{\sin t + \cos t}{\cos t - \sin t}$$
At \( t = \frac{\pi}{4} \),
$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
So,
$$\frac{dy}{dx} = \frac{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{0}$$
The slope is undefined, which means the tangent is vertical .
Final Answer: The angle with the x-axis is
$$\boxed{90^\circ}$$
Qus : 55
CUET PG MCA PYQ
1
Bag A contains 3 Red and 4 Black balls while Bag B contains 5 Red and 6 Black balls. One ball is drawn at random from
one of the bags and is found to be red. Then, the probability that it was drawn from Bag B is
1. $\frac{35}{68}$
2. $\frac{7}{38}$
3. $\frac{14}{37}$
4. $\frac{34}{43}$
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Step 1: Define events.
Let:
• A = ball drawn from Bag A
• B = ball drawn from Bag B
• R = ball drawn is Red
Since a bag is chosen at random:
$$P(A) = P(B) = \tfrac{1}{2}$$
Step 2: Probability of Red from each bag.
• From Bag A:
$$P(R|A) = \tfrac{3}{3+4} = \tfrac{3}{7}$$
• From Bag B:
$$P(R|B) = \tfrac{5}{5+6} = \tfrac{5}{11}$$
Step 3: Total probability of Red.
$$P(R) = P(A)P(R|A) + P(B)P(R|B)$$
$$= \tfrac{1}{2}\cdot\tfrac{3}{7} + \tfrac{1}{2}\cdot\tfrac{5}{11}$$
$$= \tfrac{3}{14} + \tfrac{5}{22}$$
$$= \tfrac{33}{154} + \tfrac{35}{154} = \tfrac{68}{154} = \tfrac{34}{77}$$
Step 4: Apply Bayes’ Theorem.
$$P(B|R) = \frac{P(B)P(R|B)}{P(R)}$$
$$= \frac{\tfrac{1}{2}\cdot\tfrac{5}{11}}{\tfrac{34}{77}}$$
$$= \frac{5}{22} \cdot \frac{77}{34} = \frac{385}{748}$$
$$= \tfrac{35}{68}$$
Correct Probability: $\tfrac{35}{68}$
Answer: Option 1
Qus : 56
CUET PG MCA PYQ
2
If the line through (3, y) and (2,7) is parallel to the line through (-1,4) and (0, 6), then the value of y is:
1.-7
2.9
3.7
4.2
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Step 1: Slope of line through points (-1, 4) and (0, 6).
$$m = \frac{6 - 4}{0 - (-1)} = \frac{2}{1} = 2$$
Step 2: For parallelism, slope of line through (3, y) and (2, 7) must also be 2.
$$\frac{y - 7}{3 - 2} = 2$$
Step 3: Solve for y.
$$y - 7 = 2(1)$$
$$y - 7 = 2$$
$$y = 9$$
Correct Value of y: 9
Answer: Option 2
Qus : 57
CUET PG MCA PYQ
1
If $f(a+b-x)=f(x)$ then $\int ^b_axf(x)dx$ is equal to
1
$$\frac{a+b}{2}\int ^b_af(x)dx$$
2
$$\frac{b-a}{2}\int ^b_af(x)dx$$
3
$$\frac{a+b}{2}\int ^b_af(a+x)dx$$
4
$$\frac{a+b}{2}\int ^b_axf(x)dx$$
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
We are asked to evaluate
\(\displaystyle I = \int_a^b x f(x)\, dx \quad \text{given } f(a+b-x)=f(x).\)
Step 1: Put substitution \(t=a+b-x\). Then \(dx=-dt\).
When \(x=a \Rightarrow t=b\),
when \(x=b \Rightarrow t=a\).
So,
\[
I = \int_a^b x f(x)\, dx = \int_b^a (a+b-t) f(t)(-dt)
= \int_a^b (a+b-t) f(t)\, dt.
\]
Step 2: Add both forms of \(I\):
\[
2I = \int_a^b [x f(x) + (a+b-x) f(x)] dx
= \int_a^b (a+b) f(x)\, dx.
\]
Step 3: Simplify:
\[
I = \frac{a+b}{2} \int_a^b f(x)\, dx.
\]
Final Answer:
\(\displaystyle \frac{a+b}{2}\int_a^b f(x)\, dx\)
→ matches Option 1 .
Qus : 58
CUET PG MCA PYQ
4
If ${x}^2+\frac{1}{{x}^2}=2$ then the value of ${x}^{256}+\frac{1}{{x}^{256}}$
1
1
2
0
3
-2
4
2
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Given \(x^2+\dfrac{1}{x^2}=2\). Let \(t=x+\dfrac{1}{x}\). Then
\(x^2+\dfrac{1}{x^2}=t^2-2\), so \(t^2-2=2 \Rightarrow t^2=4 \Rightarrow t=\pm2\).
From \(x+\dfrac{1}{x}=2 \Rightarrow x=1\) and from \(x+\dfrac{1}{x}=-2 \Rightarrow x=-1\).
Hence \(x^{256}+\dfrac{1}{x^{256}}=
\begin{cases}
1+1=2,& x=1\\
(-1)^{256}+(-1)^{-256}=1+1=2,& x=-1
\end{cases}\).
Final Answer: \(2\).
Qus : 59
CUET PG MCA PYQ
3
Consider the system of linear equations as 2x + 2y + z = 1, 4x + ky + 2z = 2 and kx + 4y + z = 1 then choosethe correct statement(s) from blow
(A) The system of equation has a unique solution if k≠4 and k≠2
(B) The system of equations is inconsistent for every real number k
(C) The system of equations have infinite number of solutions if k = 4
(D) The system of equations have infinite number of solutions if k = 2
Choose the correct answer from the options given below
1
(A), (B) and (D) only
2
(A), (B) and (C) only
3
(A), (C) and (D) only
4
(C) and (D) only
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
The system of equations is:
2x + 2y + z = 1
4x + ky + 2z = 2
kx + 4y + z = 1
The coefficient matrix is
\(A = \begin{bmatrix} 2 & 2 & 1 \\ 4 & k & 2 \\ k & 4 & 1 \end{bmatrix}\).
The determinant is
\(\Delta =
\begin{vmatrix}
2 & 2 & 1 \\
4 & k & 2 \\
k & 4 & 1
\end{vmatrix}\).
Expanding:
\(\Delta = 2\begin{vmatrix} k & 2 \\ 4 & 1 \end{vmatrix}
- 2\begin{vmatrix} 4 & 2 \\ k & 1 \end{vmatrix}
+ 1\begin{vmatrix} 4 & k \\ k & 4 \end{vmatrix}\).
\(\Delta = 2(k-8) - 2(4-2k) + (16-k^2)\).
\(\Delta = -k^2 + 6k - 8 = -(k-2)(k-4)\).
If \(k \neq 2,4\), then \(\Delta \neq 0\) and the system has a unique solution.
If \(k=4\): equations (1) and (2) are dependent, equation (3) reduces to the same relation, hence infinitely many solutions.
If \(k=2\): substituting gives \(y=0\) and \(2x+z=1\), equation (3) is the same, hence infinitely many solutions.
Correct Statements: (A), (C), (D)
Qus : 60
CUET PG MCA PYQ
3
Evaluate $ \frac{2x+1}{x^2+x+2}\, dx$
1. $log(2x+1) + c$ where c is an arbitrary constant
2. $log\!\left(\frac{2x+1} {x^2+x+2}\right) + c$ where c is an arbitrary constant
3. $log(x^2+x+2) + c$ where c is an arbitrary constant
4. $log\!\left(\tfrac{1}{2}\right) + c$ where c is an arbitrary constant
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Step 1: Let the denominator be
$$f(x) = x^2 + x + 2.$$
Then,
$$f'(x) = 2x + 1,$$
which is the numerator.
Step 2: Apply the rule:
$$\int \frac{f'(x)}{f(x)} \, dx = \ln|f(x)| + C.$$
Step 3: Therefore,
$$\int \frac{2x+1}{x^2+x+2}\, dx = \ln|x^2+x+2| + C.$$
Final Answer: $\log(x^2+x+2) + c$
Correct Option: 3
Qus : 61
CUET PG MCA PYQ
4
The function $f(x)=[x]^n$ , integer n>=2 (where [y] is the greatest integer less than or equal to y), is discontinuous at all point of
1
real number
2
all non-integer real numbers
3
only at zero
4
integers
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
The function is
\( f(x) = [x]^n , \quad n \geq 2 \)
where \([x]\) is the greatest integer function (GIF).
The GIF \([x]\) is discontinuous at all integers. Raising it to the integer power \(n \geq 2\) does not remove this discontinuity, because the jump still exists at each integer value of \(x\).
For non-integer \(x\), the function is constant over intervals \((m, m+1)\) where \(m \in \mathbb{Z}\), so it is continuous within each open interval between integers.
Final Answer: The function is discontinuous at all integers .
Qus : 63
CUET PG MCA PYQ
2
Match List – I with List – II
List - I List - II (A) $$\int ^{\pi/2}_0\frac{{\sin }^4x}{{\sin }^4x+{\cos }^4x}dx$$ (I) 0 (B) $$\int ^{\pi/3}_{\pi/6}\frac{1}{1+\sqrt[]{\tan x}}dx$$ (II) 0 (C) $$\int ^1_0x{e}^xdx$$ (III) $\frac{\pi}{12}$ (D) $$\int ^1_{-1}{x}^{109}{\cos }^{88}xdx$$ (IV) $\frac{\pi}{4}$
Choose the correct answer from the options given below:
1
(A – IV); (B – III); (C – I); (D – II)
2
(A – IV); (B – III); (C – II); (D – I)
3
(A – III); (B – IV); (C – II); (D – I)
4
(A – III); (B – IV); (C – I); (D – II)
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 64
CUET PG MCA PYQ
2
Which of the following statement sare TRUE?
(A) A equation $ax^2+bx+c=0$ has real and distinct roots if $b^2-4ac>=0$ and $a\ne0$ .
(B) The unit digit in $49^{18}$ is 1.
(C) If two lines make complementry angles with the axis of x then the product of their slopes is 1.
(D) The line bx – ay = 0 meet the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$
Choose the correct answer from the options given below:
1
(A) and (D) only
2
(B) and (C) only
3
(A), (B) and (C) only
4
(A), (B) and (D) only
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 70
CUET PG MCA PYQ
1
Which of the following statements are TRUE?
(A) If each element in a row is a constant multiplier of corresponding element of another row of a determinant, then the value of the determinant is always non-zero.
(B) If each element on one side of the principal diagonal of a determinant is zero, then the value of the determinants the product of the diagonal elements.
(C) The value of determinant of skew symmetric matrix of odd order is always non-zero.
(D) If A is non-singular matrix of order three, then $adj A=|A|^2$
Choose the correct answer from the options given below:
1
(B) and (D) only
2
(A) and (B) only
3
(A), (B) and (C) only
4
(A), (C) and (D) only
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 73
CUET PG MCA PYQ
1
Consider the diagram given below and the following two statements:
Statement I: Regions X, Y and Z can be expressed as $A\cap\overline{B},\, A\cap B$ and $\, \overline{A}\cap B$ respectively
Statement II: P(Y) = P (A) - P (X) = P (B) - P (Z)
In the light of the above statements, choose the correct answer from the options
given below:
1
Both Statement I and Statement II are true. 2
Both Statement I and Statement II are false. 3
Statement I is true but Statement I is false. 4
Statement I is false but Statement Il is true. Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 76
CUET PG MCA PYQ
1
In a class there are 400 students, the following table shows the number of students
studying one or more of the subjects:
Subject Number of Students Mathematics 250 Physics 150 Chemistry 100 Mathematics and Physics 100 Mathematics and Chemistry 60 Physics and Chemistry 40 Mathematics, Physics and chemistry 30
A. The number of students who study only Mathematics is 100.
B. The number of students who study only Physics is 40.
C. The number of students who study only Chemistry is 40.
D. The number of students who do not study Mathematics, Physics and
Chemistry is 70.
Choose the correct answer from the options given below:
1
B and D only 2
A and B only 3
A only 4
C only Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 79
CUET PG MCA PYQ
2
Given the marks of 25 students in the class as $\{m_1,m_2,m_3,..m_{25}\}$. Marks lie in the
range of [1-100] and $\overline{m}$ is the mean. Which of the following quantity has the value
zero?
1
$$\sum ^{25}_{i=1}|{{m}}_i-\overline{m}|$$ 2
$$\sum ^{25}_{i=1}\Bigg{(}{{m}}_i-\overline{m}\Bigg{)}$$ 3
$$\sum ^{25}_{i=1}{\Bigg{(}{{m}}_i-\overline{m}\Bigg{)}}^2$$ 4
$$\sum ^{25}_{i=1}\frac{{{m}}_i}{\overline{m}}$$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 80
CUET PG MCA PYQ
2
A equation of conic is $ax^2+2hxy+by^2+2gx+2fy+c=0$ , where $a, b, c, f, g$ and $h$ are constants. Then which of the following statement are true?
(A) The given conic is circle if a = 0 and b = 0.
(B) The given conic is circle if $a=b\ne0$ and h = 0.
(C) The given conic is circle if $a=b=\ne0$ and $h\ne0$ .
(D) The given conic represents a pair of real and distinct straight lines if f = g = c = 0 and $h^2-ab>0$.
Choose the correct answer from the options given below:
1
(B) Only 2
(B) and (D) Only 3
(A), (B), (C) and (D) 4
(D) Only Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 81
CUET PG MCA PYQ
3
Match List – I with List – II
List - I List - II $f(0)$ (A) $f(x)=\frac{log(1+4x)}{x}$ (I) $\frac{1}{4}$ (B) $f(x)=\frac{log(4+x)-log4}{x}$ (II) 1 (C) $f(x)=\frac{x}{sinx}$ (III) 4 (D) $\frac{1-cos^3x}{x sin2x}$ (IV) $\frac{3}{4}$
Choose the correct answer from the options given below:
1
(A – I); (B – III); (C – IV); (D – II)
2
(A – I); (B – III); (C – II); (D – IV)
3
(A – III); (B – I); (C – II); (D – IV)
4
(A – III); (B – I); (C – IV); (D – II)
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 85
CUET PG MCA PYQ
3
Which of the following statements are NOT TRUE?
(A) If A and B are symmetric matrices, then AB – BA is a skew symmetric matrix.
(B) Multiplying a determinant by k means multiply elements of one column by k.
(C) If $A^2-A+I=0$ , then $A^-1$ is equal to A + I.
(D) If A and B are invertible matrices of same order, then $(A+B)^{-1}=B^{-1}+A^{-1}$.
Choose the correct answer from the options given below:
1
(A), (B) and (D) only
2
(B), (C) and (D) only
3
(C) and (D) only
4
(A) and (C) onl
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Qus : 86
CUET PG MCA PYQ
2
Consider n events ${{E}}_1,{{E}}_2\ldots{{E}}_n$ with respective probabilities ${{p}}_1,{{p}}_2\ldots{{p}}_n$. If $P\Bigg{(}{{E}}_1,{{E}}_2\ldots{{E}}_n\Bigg{)}=\prod ^n_{i=1}{{p}}_i$, then
1
The events are mutually exclusive 2
The events are independent 3
The events are dependent 4
The events are mutually exclusive and independent Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 87
CUET PG MCA PYQ
1
Given a set of events ${{E}}_1,{{E}}_2\ldots{{E}}_n$ defined on the sample space S such that :
(i) $\forall\, i\, and\, j,\, i\ne j,\, {{E}}_i\cap{{E}}_j=\phi$
(ii) $\begin{matrix}\overset{{n}}{\bigcup } \\ ^{i=1}\end{matrix}{{E}}_i=S$
(iii) $P({{E}}_i){\gt}0,\, \forall$
Then the events are
1
Pairwise disjoint and exhaustive 2
Pairwise disjoint and independent 3
Dependent and mutually exclusive 4
Independent and mutually exclusive Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 88
CUET PG MCA PYQ
3
4 Indians, 3 Americans and 2 Britishers are to be arranged around a round table. Answer the following questions.
The number of ways arranging them is :
1
9! 2
9!/2 3
8! 4
8!/2 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Case 1: All persons are distinct
For n distinct persons around a round table (rotations same), arrangements = \((n-1)!\).
Here, \(n=9\). So arrangements = \((9-1)! = 8! = \boxed{40{,}320}\).
Case 2: Persons are identical by nationality
If 4 Indians, 3 Americans, and 2 Britishers are considered identical within their groups, then
Arrangements =
\[
\frac{(n-1)!}{4!\,3!\,2!}
= \frac{8!}{4!\,3!\,2!}
= \boxed{140}.
\]
Final Answer:
• If all 9 are distinct → \(40{,}320\) ways.
• If only nationality matters → \(140\) ways.
Qus : 90
CUET PG MCA PYQ
2
4 Indians, 3 Americans and 2 Britishers are to be arranged around a round table. Answer the following questions.
The number of ways of arranging them so that the three Americans should sit together is:
1
$7!\times3!$ 2
$6!\times3!$ 3
$6!\, {{{}^6P}}_3$ 4
$6!\, {{{}^7P}}_3$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Short Solution:
Total people = 4 Indians + 3 Americans + 2 Britishers = 9
Since arrangement is around a circular table, we fix one position ⇒ remaining to arrange: 8 positions
Group the 3 Americans together as a single unit ⇒ total units = 4 Indians + 1 American group + 2 Britishers = 7 units
Circular arrangement of 7 units = \( (7 - 1)! = 6! \)
Internal arrangements of 3 Americans = \( 3! \)
Total arrangements =
$$6! \times 3! = 720 \times 6 = \boxed{4320}$$
Qus : 91
CUET PG MCA PYQ
3
Given three identical boxes B1 B2 and B3 each containing two balls. B1 containstwo golden balls. B2 contains two silver balls and B3 contains one silver and onegolden ball. Conditional probabilities that the golden ball is drawn from B1 , B2 , B3 are ____,______,______ respectively
1
0, 1, 1/2 2
1/2, 0, 1 3
1, 0, 1/2 4
1, 1/2, 0 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 92
CUET PG MCA PYQ
3
Math List I with List II:
LIST I LIST 2 A. In a GP, the third term is 24 and 6th term is 192. The common ratio is _____ I. 78 B. Let Sn denotes the sum of first n terms of an AP. If S2n =3Sn , then S3n /Sn equals to _______ II. 6 C. The sum of 3 terms of a GP is 13/12 and their product is -1. The first term is ______ III. -1 D. The least value of n for which the sum 3+6+9+...+n is greater than 1000 is IV. 2
Choose the correct answer from the options given below :
1
A-III, B-I, C-II, D-IV 2
A-III, B-IV, C-I, D-II 3
A-IV, B-II, C-III, D-I 4
A-IV, B-III, C-II, D-II Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 93
CUET PG MCA PYQ
2
Math List I with List II : $\omega \ne1$ is a cube root of unity.
LIST I LIST II A. The value of $\frac{1}{9}(1-\omega)(1-{\omega}^2)(1-{\omega}^4)(1-{\omega}^8)\, $ is I. 0 B. $\omega{(1+\omega-{\omega}^2)}^7$ ________ is equal to II. 1 C. The least positive integer n such that ${(1+{\omega}^2)}^n={(1+{\omega}^4)}^n$ is III. -128 D. $(1+\omega+{\omega}^2)$ is equal to IV. 3
Choose the correct answer from the options given below:
1
A-II, B-III, C-I, D-IV 2
A-II, B-III, C-II, D-I 3
A-III, B-II, C-IV, D-I 4
A-III, B-II, C-I, D-IV Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
Qus : 94
CUET PG MCA PYQ
4
Math List I with List II : $\omega \ne1$ is a cube root of unity.
LIST I LIST II A. $\log _4(\log _3(81))=$ I. 0 B. ${3}^{4\log _9(7)}={7}^k$, then k = II. 3 C. ${2}^{\log _3(5)}-{5}^{\log _3(2)}=$ III. 1 D. $\log _2[\log _2(256)]=$ IV. 2
Choose the correct answer from the options given below:
1
A-I, B-III, C-II, D-IV 2
A-I, B-III, C-IV, D-II 3
A-III, B-IV, C-II, D-I 4
A-III, B-IV, C-I, D-II Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2022 PYQ
Solution
[{"qus_id":"11283","year":"2022"},{"qus_id":"11284","year":"2022"},{"qus_id":"11285","year":"2022"},{"qus_id":"11286","year":"2022"},{"qus_id":"11287","year":"2022"},{"qus_id":"11288","year":"2022"},{"qus_id":"11289","year":"2022"},{"qus_id":"11290","year":"2022"},{"qus_id":"11291","year":"2022"},{"qus_id":"11292","year":"2022"},{"qus_id":"11293","year":"2022"},{"qus_id":"11294","year":"2022"},{"qus_id":"11295","year":"2022"},{"qus_id":"11296","year":"2022"},{"qus_id":"11297","year":"2022"},{"qus_id":"11315","year":"2022"},{"qus_id":"11316","year":"2022"},{"qus_id":"11317","year":"2022"},{"qus_id":"11318","year":"2022"},{"qus_id":"11319","year":"2022"},{"qus_id":"11321","year":"2022"},{"qus_id":"11323","year":"2022"},{"qus_id":"11325","year":"2022"},{"qus_id":"11326","year":"2022"},{"qus_id":"11332","year":"2022"},{"qus_id":"11334","year":"2022"},{"qus_id":"11335","year":"2022"},{"qus_id":"11473","year":"2022"},{"qus_id":"11476","year":"2022"},{"qus_id":"11477","year":"2022"},{"qus_id":"11478","year":"2022"},{"qus_id":"11480","year":"2022"},{"qus_id":"11483","year":"2022"},{"qus_id":"11484","year":"2022"},{"qus_id":"11485","year":"2022"},{"qus_id":"11486","year":"2022"},{"qus_id":"11487","year":"2022"},{"qus_id":"11491","year":"2022"},{"qus_id":"11492","year":"2022"},{"qus_id":"11493","year":"2022"},{"qus_id":"11496","year":"2022"},{"qus_id":"11497","year":"2022"},{"qus_id":"11499","year":"2022"},{"qus_id":"11500","year":"2022"},{"qus_id":"11673","year":"2024"},{"qus_id":"11674","year":"2024"},{"qus_id":"11675","year":"2024"},{"qus_id":"11678","year":"2024"},{"qus_id":"11682","year":"2024"},{"qus_id":"11683","year":"2024"},{"qus_id":"11685","year":"2024"},{"qus_id":"11686","year":"2024"},{"qus_id":"11687","year":"2024"},{"qus_id":"11691","year":"2024"},{"qus_id":"11693","year":"2024"},{"qus_id":"11694","year":"2024"},{"qus_id":"11695","year":"2024"},{"qus_id":"11699","year":"2024"},{"qus_id":"11703","year":"2024"},{"qus_id":"11702","year":"2024"},{"qus_id":"11707","year":"2024"},{"qus_id":"11708","year":"2024"},{"qus_id":"11709","year":"2024"},{"qus_id":"11711","year":"2024"},{"qus_id":"11712","year":"2024"},{"qus_id":"11713","year":"2024"},{"qus_id":"11714","year":"2024"},{"qus_id":"11719","year":"2024"},{"qus_id":"11722","year":"2024"},{"qus_id":"11730","year":"2024"},{"qus_id":"11731","year":"2024"},{"qus_id":"11737","year":"2024"},{"qus_id":"11738","year":"2024"},{"qus_id":"11741","year":"2024"},{"qus_id":"12071","year":"2025"},{"qus_id":"12073","year":"2025"},{"qus_id":"12076","year":"2025"},{"qus_id":"12083","year":"2025"},{"qus_id":"12085","year":"2025"},{"qus_id":"12090","year":"2025"},{"qus_id":"12099","year":"2025"},{"qus_id":"12106","year":"2025"},{"qus_id":"12110","year":"2025"},{"qus_id":"12114","year":"2025"},{"qus_id":"12115","year":"2025"},{"qus_id":"12116","year":"2025"},{"qus_id":"12120","year":"2025"},{"qus_id":"12123","year":"2025"},{"qus_id":"12194","year":"2025"},{"qus_id":"12195","year":"2025"},{"qus_id":"12197","year":"2025"},{"qus_id":"12203","year":"2025"},{"qus_id":"12204","year":"2025"},{"qus_id":"12207","year":"2025"}]