Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Let $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a} \times \vec{c})+\vec{b}=0$ and $\vec{a}.\vec{c}=4$, then $|\vec{c}|^2$ is equal to 





Solution

Solution:

Given vectors:
  • \(\vec{a} = \hat{i} - \hat{j}\)
  • \(\vec{b} = \hat{i} + \hat{j} + \hat{k}\)
  • And \((\vec{a} \times \vec{c}) + \vec{b} = 0\)
  • \(\vec{a} \cdot \vec{c} = 4\)
From \((\vec{a} \times \vec{c}) + \vec{b} = 0\), we get: \[ \vec{a} \times \vec{c} = -\vec{b} \] Let \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\). The cross product \(\vec{a} \times \vec{c}\) is: \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ x & y & z \end{vmatrix} \] Expanding this determinant: \[ \vec{a} \times \vec{c} = (z \hat{i} + z \hat{j} + (x + y) \hat{k}) \] Setting \(\vec{a} \times \vec{c} = -\vec{b}\), we get: \[ z = -1, \quad z = -1, \quad x + y = -1 \] Therefore: \[ x + y = -1 \] Now, from \(\vec{a} \cdot \vec{c} = 4\): \[ \vec{a} \cdot \vec{c} = 1 \cdot x + (-1) \cdot y = 4 \] Simplifying: \[ x - y = 4 \] Solving the system of equations: \[ x + y = -1 \] \[ x - y = 4 \] Adding the two equations: \[ 2x = 3 \quad \Rightarrow \quad x = \frac{3}{2} \] Substituting into \(x + y = -1\): \[ \frac{3}{2} + y = -1 \quad \Rightarrow \quad y = -\frac{5}{2} \] Now, \(\vec{c} = \frac{3}{2} \hat{i} - \frac{5}{2} \hat{j} - \hat{k}\). To find \(|\vec{c}|^2\), we compute: \[ |\vec{c}|^2 = \left( \frac{3}{2} \right)^2 + \left( -\frac{5}{2} \right)^2 + (-1)^2 = \frac{9}{4} + \frac{25}{4} + 1 \] \[ |\vec{c}|^2 = \frac{9 + 25 + 4}{4} = \frac{38}{4} = 9.5 \]
Final Answer:
$$ \boxed{9.5} $$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...