A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
2
Let $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a} \times \vec{c})+\vec{b}=0$ and $\vec{a}.\vec{c}=4$, then $|\vec{c}|^2$ is equal to
Solution
Solution:
Given vectors:
\(\vec{a} = \hat{i} - \hat{j}\)
\(\vec{b} = \hat{i} + \hat{j} + \hat{k}\)
And \((\vec{a} \times \vec{c}) + \vec{b} = 0\)
\(\vec{a} \cdot \vec{c} = 4\)
From \((\vec{a} \times \vec{c}) + \vec{b} = 0\), we get:
\[
\vec{a} \times \vec{c} = -\vec{b}
\]
Let \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\).
The cross product \(\vec{a} \times \vec{c}\) is:
\[
\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ x & y & z \end{vmatrix}
\]
Expanding this determinant:
\[
\vec{a} \times \vec{c} = (z \hat{i} + z \hat{j} + (x + y) \hat{k})
\]
Setting \(\vec{a} \times \vec{c} = -\vec{b}\), we get:
\[
z = -1, \quad z = -1, \quad x + y = -1
\]
Therefore:
\[
x + y = -1
\]
Now, from \(\vec{a} \cdot \vec{c} = 4\):
\[
\vec{a} \cdot \vec{c} = 1 \cdot x + (-1) \cdot y = 4
\]
Simplifying:
\[
x - y = 4
\]
Solving the system of equations:
\[
x + y = -1
\]
\[
x - y = 4
\]
Adding the two equations:
\[
2x = 3 \quad \Rightarrow \quad x = \frac{3}{2}
\]
Substituting into \(x + y = -1\):
\[
\frac{3}{2} + y = -1 \quad \Rightarrow \quad y = -\frac{5}{2}
\]
Now, \(\vec{c} = \frac{3}{2} \hat{i} - \frac{5}{2} \hat{j} - \hat{k}\).
To find \(|\vec{c}|^2\), we compute:
\[
|\vec{c}|^2 = \left( \frac{3}{2} \right)^2 + \left( -\frac{5}{2} \right)^2 + (-1)^2 = \frac{9}{4} + \frac{25}{4} + 1
\]
\[
|\vec{c}|^2 = \frac{9 + 25 + 4}{4} = \frac{38}{4} = 9.5
\]
Final Answer:
$$ \boxed{9.5} $$
Online Test Series, Information About Examination, Syllabus, Notification and More.