Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Match List – I with List – II
 List - I List - II
 (A) Eccentricity of the conic $x^2-4x+4y+4y^2=12$ (I) 10/3
 (B) Latus rectum of conic $5x^2+9y^2=45$(II) 1
 (C) The straight line x+y=a touches the curve $y=x-x^2$ then value of a(III) 2
(D) Eccentricity of conic $3x^2-y^2=4$ (IV) $\sqrt{3}/2$ 
Choose the correct answer from the options given below:





Solution

Final Matching (List–I → List–II)

Item Result Match
(A) Eccentricity of \(x^2-4x+4y+4y^2=12\) \(\displaystyle \frac{\sqrt{3}}{2}\) (IV)
(B) Latus rectum of \(5x^2+9y^2=45\) \(\displaystyle \frac{10}{3}\) (I)
(C) Line \(x+y=a\) touches \(y=x-x^2\) ⇒ value of \(a\) \(1\) (II)
(D) Eccentricity of \(3x^2-y^2=4\) \(2\) (III)

Answer: (A) → (IV), (B) → (I), (C) → (II), (D) → (III)


Solutions (with steps)

(A) \(x^2-4x+4y+4y^2=12\) \[ (x-2)^2-4+4\!\left[(y+\tfrac12)^2-\tfrac14\right]=12 \;\Rightarrow\; (x-2)^2+4(y+\tfrac12)^2=17 \] \[ \frac{(x-2)^2}{17}+\frac{(y+\tfrac12)^2}{17/4}=1 \] Ellipse with \(a^2=17,\; b^2=\tfrac{17}{4}\Rightarrow e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\tfrac14}=\frac{\sqrt{3}}{2}. \)

(B) \(5x^2+9y^2=45 \Rightarrow \frac{x^2}{9}+\frac{y^2}{5}=1\). Here \(a=\sqrt{9}=3,\; b=\sqrt{5}\). Latus rectum length (ellipse) \(= \dfrac{2b^2}{a}=\dfrac{2\cdot5}{3}=\dfrac{10}{3}.\)

(C) Tangent: \(x+y=a \Rightarrow y=-x+a\). Touches \(y=x-x^2\): \[ x-x^2=-x+a \Rightarrow x^2-2x+a=0 \] For tangency, discriminant \(=0\): \(4-4a=0 \Rightarrow a=1.\)

(D) \(3x^2-y^2=4 \Rightarrow \dfrac{x^2}{4/3}-\dfrac{y^2}{4}=1\). Hyperbola with \(a^2=\tfrac{4}{3},\, b^2=4\). \[ e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{4}{4/3}}=\sqrt{1+3}=2. \]



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...