| List - I (Function) | List - II (Range) |
| A. $$y=\frac{1}{2-\sin 3x}$$ | I. $$\Bigg{(}1,\frac{7}{3}\Bigg{]}$$ |
| B. $$y=\frac{{x}^2+x+2}{{x}^2+x+1},\, x\in R$$ | II. $$\Bigg{[}\frac{\pi}{2},\pi\Bigg{)}\cup(\pi,\frac{3\pi}{2}\Bigg{]}$$ |
| C. $$y=\sin x-\cos x$$ | III. $$\Bigg{[}\frac{1}{3},1\Bigg{]}$$ |
| D. $$y={\cot }^{-1}(-x)-{\tan }^{-1}x+{sec}^{-1}x$$ | IV. $$[-\sqrt[]{2},\sqrt[]{2}]$$ |
Step 1: For (A)
\( y = \dfrac{1}{2 - \sin 3x} \)
Since \( \sin 3x \in [-1,1] \), we get \( 2 - \sin 3x \in [1,3] \).
Hence \( y \in \left[\tfrac{1}{3}, 1\right] \).
→ Matches with (III).
Step 2: For (B)
\( y = \dfrac{x^2 + x + 2}{x^2 + x + 1} = 1 + \dfrac{1}{x^2 + x + 1} \)
Since denominator is always positive, \( y > 1 \).
Minimum denominator = \(\tfrac{3}{4}\) at \(x = -\tfrac{1}{2}\).
So maximum \( y = 1 + \tfrac{1}{3/4} = \tfrac{7}{3} \).
Thus, Range = \((1, \tfrac{7}{3}] \).
→ Matches with (I).
Step 3: For (C)
\( y = \sin x - \cos x = \sqrt{2}\sin\!\left(x - \tfrac{\pi}{4}\right) \)
Hence, Range = \([-\sqrt{2}, \sqrt{2}] \).
→ Matches with (IV).
Step 4: For (D)
\( y = \cot^{-1}(-x) - \tan^{-1}(x) + \sec^{-1}(x) \)
Simplifying with inverse trig identities gives Range:
\(\left[\tfrac{\pi}{2}, \pi\right) \cup \left(\pi, \tfrac{3\pi}{2}\right]\).
→ Matches with (II).
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.