Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Match List I with List II 
 List - I (Function) List - II (Range)
A. $$y=\frac{1}{2-\sin 3x}$$I. $$\Bigg{(}1,\frac{7}{3}\Bigg{]}$$
B. $$y=\frac{{x}^2+x+2}{{x}^2+x+1},\, x\in R$$II. $$\Bigg{[}\frac{\pi}{2},\pi\Bigg{)}\cup(\pi,\frac{3\pi}{2}\Bigg{]}$$
C. $$y=\sin x-\cos x$$III. $$\Bigg{[}\frac{1}{3},1\Bigg{]}$$
D. $$y={\cot }^{-1}(-x)-{\tan }^{-1}x+{sec}^{-1}x$$IV. $$[-\sqrt[]{2},\sqrt[]{2}]$$
Choose the correct answer from the options given below:





Solution

Step 1: For (A)

\( y = \dfrac{1}{2 - \sin 3x} \)
Since \( \sin 3x \in [-1,1] \), we get \( 2 - \sin 3x \in [1,3] \).
Hence \( y \in \left[\tfrac{1}{3}, 1\right] \). → Matches with (III).

Step 2: For (B)

\( y = \dfrac{x^2 + x + 2}{x^2 + x + 1} = 1 + \dfrac{1}{x^2 + x + 1} \)
Since denominator is always positive, \( y > 1 \).
Minimum denominator = \(\tfrac{3}{4}\) at \(x = -\tfrac{1}{2}\).
So maximum \( y = 1 + \tfrac{1}{3/4} = \tfrac{7}{3} \).
Thus, Range = \((1, \tfrac{7}{3}] \). → Matches with (I).

Step 3: For (C)

\( y = \sin x - \cos x = \sqrt{2}\sin\!\left(x - \tfrac{\pi}{4}\right) \)
Hence, Range = \([-\sqrt{2}, \sqrt{2}] \). → Matches with (IV).

Step 4: For (D)

\( y = \cot^{-1}(-x) - \tan^{-1}(x) + \sec^{-1}(x) \)
Simplifying with inverse trig identities gives Range:
\(\left[\tfrac{\pi}{2}, \pi\right) \cup \left(\pi, \tfrac{3\pi}{2}\right]\). → Matches with (II).



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...