Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA Definite Integration PYQ


AMU MCA PYQ
The value of $\iint_R y\sin(ny)\,dA$, where $R=[1,2]\times[0,\pi]$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$\iint_R y\sin(ny)\,dA=\int_{1}^{2}\!\!dx\int_{0}^{\pi} y\sin(ny)\,dy$

$=\int_{0}^{\pi} y\sin(ny)\,dy$

Let $u=y,\; dv=\sin(ny)\,dy \Rightarrow v=-\frac{\cos(ny)}{n}$

$\int_{0}^{\pi} y\sin(ny)\,dy=\left[-\frac{y\cos(ny)}{n}\right]_{0}^{\pi}+\frac{1}{n}\int_{0}^{\pi}\cos(ny)\,dy$

$=-\frac{\pi\cos(n\pi)}{n}+\frac{1}{n^2}\left[\sin(ny)\right]_{0}^{\pi}=-\frac{\pi(-1)^n}{n}$


AMU MCA PYQ
The volume of the solid in the first octant bounded by the cylinder $z=9-y^2$ and the plane $x=2$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

First octant: $0\le x\le 2$, $0\le y\le 3$, $0\le z\le 9-y^2$

$V=\int_{0}^{2}\!\!dx\int_{0}^{3}(9-y^2)\,dy=2\left[9y-\frac{y^3}{3}\right]_{0}^{3}=2(27-9)=36$


AMU MCA PYQ
The volume of the solid that lies under the paraboloid $z=x^2+y^2$ above the $xy$-plane, and inside the cylinder $x^2+y^2=2x$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Use polar: $x=r\cos\theta,\; y=r\sin\theta$

Cylinder: $r^2=2r\cos\theta \Rightarrow r=2\cos\theta,\; -\frac{\pi}{2}\le\theta\le\frac{\pi}{2}$

$V=\iint_D (x^2+y^2)\,dA=\int_{-\pi/2}^{\pi/2}\int_{0}^{2\cos\theta} r^2\cdot r\,dr\,d\theta$

$=\int_{-\pi/2}^{\pi/2}\left[\frac{r^4}{4}\right]_{0}^{2\cos\theta}d\theta=\int_{-\pi/2}^{\pi/2}4\cos^4\theta\,d\theta$

$=8\int_{0}^{\pi/2}\cos^4\theta\,d\theta=8\cdot\frac{3\pi}{16}=\frac{3\pi}{2}$


AMU MCA PYQ
The value of $\int_C (y^2\,dx + x^2\,dy)$, where $C$ is the triangle given by $x=0$, $x+y=1$, $y=0$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Using Green’s theorem:

$\oint_C (M\,dx+N\,dy)=\iint_D\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)dA$

Here $M=y^2,\; N=x^2$ so $\frac{\partial N}{\partial x}=2x,\; \frac{\partial M}{\partial y}=2y$

Integral $=\iint_D 2(x-y)\,dA$ over triangle with vertices $(0,0),(1,0),(0,1)$

By symmetry $\iint_D x\,dA=\iint_D y\,dA$ so $\iint_D (x-y)\,dA=0$

Hence value $=0$


AMU MCA PYQ
If $I=\oint_C e^x,dx+2y,dy-dz$, where $C$ is the curve $x^2+y^2=4$ and $z=2$, then the value of $I$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
Simpson’s one-third rule for evaluation of $\int_a^b f(x),dx$ requires the interval $[a,b]$ to be divided into:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Simpson’s $\frac{1}{3}$ rule requires an even number of subintervals.

AMU MCA PYQ
The value of $ \displaystyle \int_0^{\infty} \frac{y^x,dx,dy}{x^2+y^2} $ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using standard double integral result over first quadrant: $ \int_0^\infty \int_0^\infty \frac{dx,dy}{x^2+y^2} = \frac{\pi}{4} $

AMU MCA PYQ
The value of $ \iiint_V z,dx,dy,dz $ where $V$ is cylinder bounded by $z=0,\ z=1,\ x^2+y^2=4$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Volume element in cylindrical coordinates: $ \int_0^1 z,dz \int_{r=0}^2 r,dr \int_0^{2\pi} d\theta $ $= \left[\frac{1}{2}\right] \cdot \left[2\right] \cdot (2\pi)$ $= 2\pi$

AMU MCA PYQ
If the Trapezoidal rule with interval $[0,1]$ is exact for approximating the integral $\int_{0}^{1} (x^3 - cx^2)\,dx$, then the value of $c$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Actual integral:

$\int_{0}^{1} (x^3 - cx^2)\,dx = \left[\frac{x^4}{4} - \frac{cx^3}{3}\right]_0^1 = \frac{1}{4} - \frac{c}{3}$

Trapezoidal rule with one interval:

$T = \frac{1}{2}[f(0) + f(1)]$

$f(0) = 0$

$f(1) = 1 - c$

$T = \frac{1}{2}(1 - c)$

Since exact:

$\frac{1}{4} - \frac{c}{3} = \frac{1}{2}(1 - c)$

Solving:

$\frac{1}{4} - \frac{c}{3} = \frac{1}{2} - \frac{c}{2}$

Multiply by 12:

$3 - 4c = 6 - 6c$

$2c = 3$

$c = 1.5$



AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...