Actual integral:
$\int_{0}^{1} (x^3 - cx^2)\,dx = \left[\frac{x^4}{4} - \frac{cx^3}{3}\right]_0^1 = \frac{1}{4} - \frac{c}{3}$
Trapezoidal rule with one interval:
$T = \frac{1}{2}[f(0) + f(1)]$
$f(0) = 0$
$f(1) = 1 - c$
$T = \frac{1}{2}(1 - c)$
Since exact:
$\frac{1}{4} - \frac{c}{3} = \frac{1}{2}(1 - c)$
Solving:
$\frac{1}{4} - \frac{c}{3} = \frac{1}{2} - \frac{c}{2}$
Multiply by 12:
$3 - 4c = 6 - 6c$
$2c = 3$
$c = 1.5$
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.