Using Green’s theorem:
$\oint_C (M\,dx+N\,dy)=\iint_D\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)dA$
Here $M=y^2,\; N=x^2$ so $\frac{\partial N}{\partial x}=2x,\; \frac{\partial M}{\partial y}=2y$
Integral $=\iint_D 2(x-y)\,dA$ over triangle with vertices $(0,0),(1,0),(0,1)$
By symmetry $\iint_D x\,dA=\iint_D y\,dA$ so $\iint_D (x-y)\,dA=0$
Hence value $=0$
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.