Total distance = 6 km, Total time = 90 min = 1.5 hr
Distance covered = $\frac{2}{3}\times6=4$ km, Time taken = $\frac{2}{3}\times90=60$ min = 1 hr
Speed in first part = $\dfrac{4}{1}=4$ km/hr
Remaining distance = 2 km, Remaining time = 0.5 hr
Required speed = $\dfrac{2}{0.5}=4$ km/hr
Answer: $\boxed{4\text{ km/hr}}$ ✅
Let rates be $a,b,c$. Given: $a+b=\tfrac{1}{15}$, $b+c=\tfrac{1}{20}$, $a+b+c=\tfrac{1}{10}$.
Using $(a+b)+(a+c)+(b+c)=2(a+b+c)$:
$\tfrac{1}{15}+(a+c)+\tfrac{1}{20}=\tfrac{1}{5}\ \Rightarrow\ a+c=\tfrac{1}{5}-\left(\tfrac{1}{15}+\tfrac{1}{20}\right)=\tfrac{1}{12}$
Time by $A+C = \dfrac{1}{1/12}=12$ days.
Answer: $\boxed{12\text{ days}}$ ✅
Speed of faster train $= 50$ km/h $= 13.89$ m/s
Speed of slower train $= 40$ km/h $= 11.11$ m/s
Relative speed (opposite directions) $= 13.89 + 11.11 = 25$ m/s
Distance to be covered $= 500$ m
Time $= \dfrac{500}{25} = 20$ seconds
Answer: $\boxed{20\text{ seconds}}$ ✅
Speed in still water $= 12$ km/hr
Rate of current $= 3$ km/hr
Downstream speed $= 12 + 3 = 15$ km/hr
Time $= 30$ min $= \dfrac{1}{2}$ hr
Distance $= 15 \times \dfrac{1}{2} = 7.5$ km
Answer: $\boxed{7.5\text{ km}}$ ✅
If the following holds:
$ \lim_{n\to\infty}\frac{u_n}{v_n}=l,\quad u_n>0,\ v_n>0,\ l\ne 0 $ then choose the correct option:
(a) $\sum u_n$ and $\sum v_n$ converge together
(b) $\sum u_n$ diverges and $\sum v_n$ converges
(c) $\sum u_n$ converges and $\sum v_n$ diverges
(d) Neither $\sum u_n$ converges nor $\sum v_n$ diverges
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.