Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Trigonometry PYQ


Jamia Millia Islamia PYQ
The complex number $z$ which satisfies the condition $\left|\dfrac{z+i}{z-1}\right| = 1$ lies on





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $z = x + iy$ Then $\left|\dfrac{z+i}{z-1}\right| = 1 \Rightarrow |z+i| = |z-1|$ $\Rightarrow (x)^2 + (y+1)^2 = (x-1)^2 + y^2$ $\Rightarrow 2x = 1 - 2y$ $\Rightarrow x + y = \dfrac{1}{2}$ Hence the locus is a straight line.

Jamia Millia Islamia PYQ
If $\sin t = \dfrac{1}{5}$ and $0 < t < \dfrac{\pi}{2}$, then $\cos(4t)$ = ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

$\cos^2 t = 1 - \sin^2 t = \dfrac{24}{25}$ $\cos(4t) = 8\cos^4 t - 8\cos^2 t + 1 = 8\left(\dfrac{24}{25}\right)^2 - 8\left(\dfrac{24}{25}\right) + 1 = 0.6928$

Jamia Millia Islamia PYQ
If $\cos\alpha + \cos\beta + \cos\gamma = 3\pi$, then $\alpha((\beta + \gamma) + \beta(\gamma + \alpha) + \gamma(\alpha + \beta))$ equals





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Expression: $\alpha((\beta+\gamma)) + \beta((\gamma+\alpha)) + \gamma((\alpha+\beta))$ $= 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ But no relation with $\pi$ is relevant; data implies constants. Numerically simplifying: $\boxed{6}$ $\boxed{\text{Answer: (C) 6}}$

Jamia Millia Islamia PYQ
Find the value of $ \dfrac{1}{\sin 10^\circ} - \dfrac{\sqrt{3}}{\cos 10^\circ} = ? $





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

For this expression, $\dfrac{1}{\sin 10^\circ} - \dfrac{\sqrt{3}}{\cos 10^\circ} = \dfrac{\cos 10^\circ - \sqrt{3}\sin 10^\circ}{\sin 10^\circ \cos 10^\circ}.$ Now, $\cos 10^\circ - \sqrt{3}\sin 10^\circ = 2\cos(60^\circ + 10^\circ) = 2\cos 70^\circ.$ Also, $\sin 10^\circ \cos 10^\circ = \dfrac{1}{2}\sin 20^\circ.$ Hence, $\dfrac{2\cos70^\circ}{\frac{1}{2}\sin20^\circ} = \dfrac{2\sin20^\circ}{\sin20^\circ} = 2.$

Jamia Millia Islamia PYQ
The value of $\sin\dfrac{\pi}{16} \sin\dfrac{3\pi}{16} \sin\dfrac{5\pi}{16} \sin\dfrac{7\pi}{16}$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

We know that $\sin x \sin\!\left(\dfrac{\pi}{4} - x\right) \sin\!\left(\dfrac{\pi}{4} + x\right) = \dfrac{1}{4}\sin(4x).$ Let $x = \dfrac{\pi}{16}$. Then, $\sin\dfrac{\pi}{16} \sin\dfrac{3\pi}{16} \sin\dfrac{5\pi}{16} \sin\dfrac{7\pi}{16} = \dfrac{\sqrt{2}}{32}.$

Jamia Millia Islamia PYQ
If $\sin\theta+\csc\theta=2$, then $\sin^{n}\theta+\csc^{n}\theta$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

By AM–GM, $\sin\theta+\csc\theta\ge2$, equality at $\sin\theta=1$. Hence $\sin^{n}\theta+\csc^{n}\theta=1^{n}+1^{n}=2$.

Jamia Millia Islamia PYQ
The value of $\sin^{6}x+\cos^{6}x+3\sin^{2}x\cos^{2}x$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sin^{6}x+\cos^{6}x=(\sin^{2}x+\cos^{2}x)^{3}-3\sin^{2}x\cos^{2}x=1-3s^{2}c^{2}$. Add $3s^{2}c^{2}$ ⇒ total $=1$.

Jamia Millia Islamia PYQ
If $x=a\cos^{2}\theta\sin\theta$ and $y=a\sin^{2}\theta\cos\theta$, then $(x^{2}+y^{2})^{3}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$x^{2}+y^{2}=a^{2}\sin^{2}\theta\cos^{2}\theta$. So $(x^{2}+y^{2})^{3}=a^{6}\sin^{6}\theta\cos^{6}\theta = a^{2}(a^{4}\sin^{6}\theta\cos^{6}\theta)=a^{2}x^{2}y^{2}$.

Jamia Millia Islamia PYQ
The minimum value of $3\cos\theta+4\sin\theta+10$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$R=\sqrt{3^2+4^2}=5$. Min$(3\cos\theta+4\sin\theta)=-5$. So min total $= -5+10=5$.

Jamia Millia Islamia PYQ
$\sin6^\circ\,\sin42^\circ\,\sin66^\circ\,\sin78^\circ$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Use $\sin3x=4\sin x\sin(60^\circ-x)\sin(60^\circ+x)$ with $x=6^\circ$ and $\sin(90^\circ-\alpha)=\cos\alpha$, then simplify the product. Value $= \tfrac{1}{16}$.

Jamia Millia Islamia PYQ
An object moved in a circular path of radius 21 metre such that it made an angle of $30^\circ$. What is the distance covered by the object?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Arc length $s = r\theta$ (where $\theta$ is in radians) $\theta = 30^\circ = \dfrac{\pi}{6}$ radians $r = 21$ m $s = 21 \times \dfrac{\pi}{6} = \dfrac{21\pi}{6} = 11$ m (approx)

Jamia Millia Islamia PYQ
The value of $2\sin^{2}\theta \cdot \cos^{2}\theta (\sec^{2}\theta + \csc^{2}\theta)$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\sec^{2}\theta = 1 + \tan^{2}\theta$ and $\csc^{2}\theta = 1 + \cot^{2}\theta$. So, $\sec^{2}\theta + \csc^{2}\theta = 2 + \tan^{2}\theta + \cot^{2}\theta$. Now, $\tan^{2}\theta + \cot^{2}\theta = \dfrac{\sin^{4}\theta + \cos^{4}\theta}{\sin^{2}\theta \cos^{2}\theta} = \dfrac{1 - 2\sin^{2}\theta \cos^{2}\theta}{\sin^{2}\theta \cos^{2}\theta}.$ Hence, $2\sin^{2}\theta \cos^{2}\theta(\sec^{2}\theta + \csc^{2}\theta) = 2\sin^{2}\theta \cos^{2}\theta \left(2 + \dfrac{1 - 2\sin^{2}\theta \cos^{2}\theta}{\sin^{2}\theta \cos^{2}\theta}\right) = 2\sin^{2}\theta \cos^{2}\theta \left(\dfrac{2\sin^{2}\theta \cos^{2}\theta + 1 - 2\sin^{2}\theta \cos^{2}\theta}{\sin^{2}\theta \cos^{2}\theta}\right) = 2.$

Jamia Millia Islamia PYQ
If $\cos\theta + \sec\theta = 3$, then $\cos^{2}\theta + \sec^{2}\theta$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Let $\cos\theta = x \Rightarrow \sec\theta = \dfrac{1}{x}$. So, $x + \dfrac{1}{x} = 3 \Rightarrow x^{2} + \dfrac{1}{x^{2}} = (x + \dfrac{1}{x})^{2} - 2 = 9 - 2 = 7.$ Hence $\cos^{2}\theta + \sec^{2}\theta = 7.$

Jamia Millia Islamia PYQ
The value of $\tan1^{\circ} \cdot \tan2^{\circ} \cdot \tan3^{\circ} \cdots \tan89^{\circ}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\tan1^{\circ} \cdot \tan89^{\circ} = \tan1^{\circ} \cdot \cot1^{\circ} = 1$. Similarly, $\tan2^{\circ} \cdot \tan88^{\circ} = 1$, and so on. But $\tan45^{\circ} = 1$. Hence the entire product = 1.

Jamia Millia Islamia PYQ
If $\cos\theta + \cos^{3}\theta = \sin^{2}\theta$, then $\sin^{6}\theta - 4\sin^{4}\theta + 8\sin^{2}\theta$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Given $\cos\theta + \cos^{3}\theta = \sin^{2}\theta$. Now, $\sin^{2}\theta = 1 - \cos^{2}\theta$. So, $1 - \cos^{2}\theta = \cos\theta + \cos^{3}\theta \Rightarrow \cos^{3}\theta + \cos^{2}\theta + \cos\theta - 1 = 0$. Let $\cos\theta = 1$, then $\sin\theta = 0$. Substituting $\sin\theta = 0$ gives $\sin^{6}\theta - 4\sin^{4}\theta + 8\sin^{2}\theta = 0 - 0 + 0 = 0$. But for $\cos\theta = \frac{1}{2}$, $\sin^{2}\theta = \frac{3}{4}$ gives value $4$.

Jamia Millia Islamia PYQ
If $\cos^{2}\theta + \sec^{2}\theta = a$, then …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\cos^{2}\theta + \sec^{2}\theta = \cos^{2}\theta + \dfrac{1}{\cos^{2}\theta}$. Let $x = \cos^{2}\theta$. Then $a = x + \dfrac{1}{x}$. By AM ≥ GM, $x + \dfrac{1}{x} \ge 2$.

Jamia Millia Islamia PYQ
The value of $\tan^{-1}(\tan 13)$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

For $\tan^{-1}(\tan \theta)$, the result lies in $(-\frac{\pi}{2}, \frac{\pi}{2})$. Since $13$ radians is beyond this interval, $\tan 13 = \tan(13 - 4\pi)$ $\Rightarrow \tan^{-1}(\tan 13) = 13 - 4\pi$

Jamia Millia Islamia PYQ
$\cot x - \cot 2x + \cot 3x - \cot 3x \cdot \cot 2x \cdot \cot x$ equals:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

We know the trigonometric identity: $\cot A \cot B \cot C - \cot A - \cot B - \cot C = 0$ ⟹ $\cot A - \cot B + \cot C - \cot A \cot B \cot C = 0$ Hence, the given expression equals $1$.

Jamia Millia Islamia PYQ
The value of $\tan\left(\frac{\pi}{8}\right)$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$\tan\left(\frac{\pi}{8}\right) = \tan(22.5^\circ)$ Using the half–angle identity: $\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta}$ For $\theta = \frac{\pi}{4}$, $\tan\frac{\pi}{8} = \frac{1 - \cos\frac{\pi}{4}}{\sin\frac{\pi}{4}} = \frac{1 - \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \sqrt{2} - 1.$

Jamia Millia Islamia PYQ
$\cos^2 2\theta =$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Identity $\sin^2x+\cos^2x=1$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...