Let $z = x + iy$
Then $\left|\dfrac{z+i}{z-1}\right| = 1 \Rightarrow |z+i| = |z-1|$
$\Rightarrow (x)^2 + (y+1)^2 = (x-1)^2 + y^2$
$\Rightarrow 2x = 1 - 2y$
$\Rightarrow x + y = \dfrac{1}{2}$
Hence the locus is a straight line.
$x^{2}+y^{2}=a^{2}\sin^{2}\theta\cos^{2}\theta$.
So $(x^{2}+y^{2})^{3}=a^{6}\sin^{6}\theta\cos^{6}\theta
= a^{2}(a^{4}\sin^{6}\theta\cos^{6}\theta)=a^{2}x^{2}y^{2}$.
Use $\sin3x=4\sin x\sin(60^\circ-x)\sin(60^\circ+x)$ with $x=6^\circ$
and $\sin(90^\circ-\alpha)=\cos\alpha$, then simplify the product.
Value $= \tfrac{1}{16}$.
For $\tan^{-1}(\tan \theta)$, the result lies in $(-\frac{\pi}{2}, \frac{\pi}{2})$.
Since $13$ radians is beyond this interval,
$\tan 13 = \tan(13 - 4\pi)$
$\Rightarrow \tan^{-1}(\tan 13) = 13 - 4\pi$
We know the trigonometric identity:
$\cot A \cot B \cot C - \cot A - \cot B - \cot C = 0$
⟹ $\cot A - \cot B + \cot C - \cot A \cot B \cot C = 0$
Hence, the given expression equals $1$.