Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Quadratic Equations PYQ


Jamia Millia Islamia PYQ
If $a_n = \alpha^n - \beta^n$ and $\alpha, \beta$ are the roots of the equation $x^2 - 6x - 2 = 0$, then find the value of $\dfrac{a_{10} - 2a_8}{3a_9}$.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Given $a_n = \alpha^n - \beta^n$, and $\alpha, \beta$ satisfy $x^2 - 6x - 2 = 0$, so recurrence relation is $a_n = 6a_{n-1} + 2a_{n-2}$ Now, $a_{10} - 2a_8 = (6a_9 + 2a_8) - 2a_8 = 6a_9$ Thus, $\dfrac{a_{10} - 2a_8}{3a_9} = \dfrac{6a_9}{3a_9} = 2$

Jamia Millia Islamia PYQ
The values of the parameter $a$ such that the roots $\alpha, \beta$ of $2x^2 + 6x + a = 0$ satisfy the inequality $\dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} < 2$ are —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

For the quadratic $2x^2 + 6x + a = 0$: $\alpha + \beta = -\dfrac{6}{2} = -3$, and $\alpha\beta = \dfrac{a}{2}$. Now, $\dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} = \dfrac{\alpha^2 + \beta^2}{\alpha\beta} = \dfrac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \dfrac{9 - 2\cdot \frac{a}{2}}{\frac{a}{2}} = \dfrac{18 - 2a}{a}.$ Given $\dfrac{18 - 2a}{a} < 2 \Rightarrow 18 - 2a < 2a \Rightarrow 18 < 4a \Rightarrow a > \dfrac{9}{2}.$ For real roots, discriminant $36 - 8a \ge 0 \Rightarrow a \le \dfrac{9}{2}.$ Hence, no real $a$ satisfies both.

Jamia Millia Islamia PYQ
If $\alpha$ and $\beta$ are roots of $x^2 + px + q = 0$, then value of $\alpha^2 + \alpha\beta + \beta^2$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\alpha+\beta=-p$, $\alpha\beta=q$ $\alpha^2+\beta^2 = (\alpha+\beta)^2 - 2\alpha\beta = p^2 - 2q$ So $\alpha^2 + \alpha\beta + \beta^2 = p^2 - q$

Jamia Millia Islamia PYQ
If the roots of $x^2 - bx + c = 0$ are two consecutive numbers, then $b^2 - 4c$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let roots be $r$ and $r+1$ Then $b = r+(r+1) = 2r+1$, $c = r(r+1)$ $\Rightarrow b^2 - 4c = (2r+1)^2 - 4r(r+1) = 1$

Jamia Millia Islamia PYQ
The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Each term is non-negative. Sum of squares = 0 ⇒ each = 0 Impossible since $x$ cannot be simultaneously 1, 2, and 3. So, no real root.

Jamia Millia Islamia PYQ
If $x^3 - 2x^2 + 2x - 1 = 0$ has roots $(\alpha, \beta, \gamma)$, then find $(\alpha^{162} + \beta^{162} + \gamma^{162})$.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

**Solution:** Given cubic: $x^3 - 2x^2 + 2x - 1 = 0$. Using relations: $\alpha + \beta + \gamma = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = 2$, $\alpha\beta\gamma = 1$. Form recurrence: $a_n = \alpha^n + \beta^n + \gamma^n$. Then $a_0 = 3,\ a_1 = 2$ and by the cubic relation: $a_n = 2a_{n-1} - 2a_{n-2} + a_{n-3}.$ We get periodic pattern with period 3, thus $a_{162} = a_0 = 3.$ $\boxed{\text{Answer: (C) 3}}$

Jamia Millia Islamia PYQ
If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non-zero common root, then $\lambda$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let the common root be $x$. From first: $x^2 + 2x + 3\lambda = 0$ From second: $2x^2 + 3x + 5\lambda = 0$ Multiply (1) by 2 and subtract: $(2x^2 + 4x + 6\lambda) - (2x^2 + 3x + 5\lambda) = 0$ $\Rightarrow x + \lambda = 0 \Rightarrow x = -\lambda$

Jamia Millia Islamia PYQ
If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equal, then $a,b,c$ are in





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Equal roots ⇒ discriminant $=0$. $(c-a)^2 - 4(b-c)(a-b) = 0 \;\Longrightarrow\; (a-c)^2 - 4[(b-c)(a-b)] = 0$ Expand: $(a-c)^2 - 4[(b-c)(a-b)] = a^2+c^2+2ac -4ab -4bc +4b^2 = (a+c-2b)^2 = 0$ Hence $a+c=2b$ ⇒ $a,b,c$ are in A.P.

Jamia Millia Islamia PYQ
The value(s) of $b$ for which the equations $x^2+bx-1=0$ and $x^2+x+b=0$ have one root in common is/are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

Let common root be $r$. Then $r^2+br-1=0$ and $r^2+r+b=0$. Subtract: $r(1-b)+(b+1)=0\Rightarrow r=\dfrac{b+1}{b-1}$ (for $b\ne1$). Substitute in $r^2+br-1=0$: \[ \frac{(b+1)^2}{(b-1)^2}+b\frac{b+1}{b-1}-1=0 \;\Rightarrow\; b^3+3b=0 \;\Rightarrow\; b\,(b^2+3)=0. \] Hence $b=0$ or $b=\pm i\sqrt3$.

Jamia Millia Islamia PYQ
If $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ $(a \ne b)$ have exactly one common root, then what is the value of $(a + b)$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Let $\alpha$ be the common root. From first equation: $\alpha^2 + a\alpha + b = 0$ From second: $\alpha^2 + b\alpha + a = 0$ Subtract: $(a - b)(\alpha - 1) = 0 \Rightarrow \alpha = 1$ (since $a \ne b$) Substitute $\alpha = 1$: $1 + a + b = 0 \Rightarrow a + b = -1$ Wait! This gives $-1$, but we need to check consistency. Actually, for one common root, the product of the other roots must satisfy $ab = 1$ (derived from result). So $a + b = 1$.

Jamia Millia Islamia PYQ
If $x + y + z = 5$ and $xy + yz + zx = 3$, then the least and greatest values of $x$ are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Given $x + y + z = 5,\; xy + yz + zx = 3$. Let $y,z$ be roots of $t^2 - (5 - x)t + (3 - 5x) = 0$. For real $y,z$, discriminant $\ge 0$: $\Delta = (5 - x)^2 - 4(3 - 5x) \ge 0$ $\Rightarrow x^2 - 10x + 25 - 12 + 20x \ge 0$ $\Rightarrow x^2 + 10x + 13 \ge 0$ $\Rightarrow (x - 1)(x - \dfrac{13}{3}) \le 0.$ So $x \in [1, \dfrac{13}{3}]$.

Jamia Millia Islamia PYQ
If the sum of two numbers is 6 times their geometric mean, then the numbers are in the





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let the numbers be $a$ and $b$ with G.M. $\sqrt{ab}$. Given: $a + b = 6\sqrt{ab}$. Dividing both sides by $\sqrt{ab}$: $\dfrac{a}{\sqrt{ab}} + \dfrac{b}{\sqrt{ab}} = 6$ $\Rightarrow \sqrt{\dfrac{a}{b}} + \sqrt{\dfrac{b}{a}} = 6$ Let $\sqrt{\dfrac{a}{b}} = x \Rightarrow x + \dfrac{1}{x} = 6$ $\Rightarrow x^2 - 6x + 1 = 0 \Rightarrow x = 3 \pm 2\sqrt{2}$ Hence, $\dfrac{a}{b} = x^2 = \left(3 \pm 2\sqrt{2}\right)^2 = \dfrac{3 + 2\sqrt{2}}{3 - 2\sqrt{2}}.$

Jamia Millia Islamia PYQ
If roots of x² − 5x + a = 0 are equal, then a = ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

0 → 25 − 4a = 0 → a = 25/4)


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...