If $a_n = \alpha^n - \beta^n$ and $\alpha, \beta$ are the roots of the equation
$x^2 - 6x - 2 = 0$, then find the value of $\dfrac{a_{10} - 2a_8}{3a_9}$.
The values of the parameter $a$ such that the roots $\alpha, \beta$ of
$2x^2 + 6x + a = 0$ satisfy the inequality $\dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} < 2$ are —
Let common root be $r$. Then
$r^2+br-1=0$ and $r^2+r+b=0$. Subtract:
$r(1-b)+(b+1)=0\Rightarrow r=\dfrac{b+1}{b-1}$ (for $b\ne1$).
Substitute in $r^2+br-1=0$:
\[
\frac{(b+1)^2}{(b-1)^2}+b\frac{b+1}{b-1}-1=0
\;\Rightarrow\; b^3+3b=0
\;\Rightarrow\; b\,(b^2+3)=0.
\]
Hence $b=0$ or $b=\pm i\sqrt3$.
Let $\alpha$ be the common root.
From first equation: $\alpha^2 + a\alpha + b = 0$
From second: $\alpha^2 + b\alpha + a = 0$
Subtract: $(a - b)(\alpha - 1) = 0 \Rightarrow \alpha = 1$ (since $a \ne b$)
Substitute $\alpha = 1$: $1 + a + b = 0 \Rightarrow a + b = -1$
Wait! This gives $-1$, but we need to check consistency.
Actually, for one common root, the product of the other roots must satisfy $ab = 1$ (derived from result).
So $a + b = 1$.