A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
4
The value(s) of $b$ for which the equations
$x^2+bx-1=0$ and $x^2+x+b=0$ have one root in common is/are:
Solution
Let common root be $r$. Then
$r^2+br-1=0$ and $r^2+r+b=0$. Subtract:
$r(1-b)+(b+1)=0\Rightarrow r=\dfrac{b+1}{b-1}$ (for $b\ne1$).
Substitute in $r^2+br-1=0$:
\[
\frac{(b+1)^2}{(b-1)^2}+b\frac{b+1}{b-1}-1=0
\;\Rightarrow\; b^3+3b=0
\;\Rightarrow\; b\,(b^2+3)=0.
\]
Hence $b=0$ or $b=\pm i\sqrt3$.
Online Test Series, Information About Examination, Syllabus, Notification and More.