Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Indefinite Integration PYQ


Jamia Millia Islamia PYQ
Find the value of $\displaystyle \int \dfrac{x,dx}{\sqrt{x^2 + 4}}$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Let $x = 2\tan\theta$, $dx = 2\sec^2\theta,d\theta$ $\Rightarrow I = \int \dfrac{2\tan\theta \cdot 2\sec^2\theta}{2\sec\theta}d\theta = 2\int \tan\theta\sec\theta,d\theta = 2\sec\theta + C = \dfrac{1}{2}\sqrt{x^2+4}+C$ Hence equivalent to $\dfrac{1}{4}\sec^{-1}\left(\dfrac{x}{2}\right)$

Jamia Millia Islamia PYQ
$\displaystyle \int \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta}\, dx$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

$\cos A - \cos B = -2\sin\dfrac{A+B}{2}\sin\dfrac{A-B}{2}$ $\Rightarrow \cos 2x - \cos 2\theta = -2\sin(x+\theta)\sin(x-\theta)$ and $\cos x - \cos\theta = -2\sin\dfrac{x+\theta}{2}\sin\dfrac{x-\theta}{2}$ So, $\displaystyle \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} = \dfrac{\sin(x+\theta)\sin(x-\theta)}{\sin\dfrac{x+\theta}{2}\sin\dfrac{x-\theta}{2}} = 4\cos\dfrac{x+\theta}{2}\cos\dfrac{x-\theta}{2} = 2(\cos x + \cos\theta)$ Hence, $\displaystyle \int \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta},dx = \int 2(\cos x + \cos\theta),dx = 2\sin x + 2x\cos\theta + C$ $\boxed{\text{Answer: (A) }2(\sin x + x\cos\theta) + C}$

Jamia Millia Islamia PYQ
Let the equation of a curve passing through $(0,1)$ be $y=\displaystyle\int x^{2}e^{x^{3}}\,dx$. If the curve is written as $x=f(y)$, then $f(y)$ is –





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Solution: Let $t=x^3 \Rightarrow dt=3x^2dx$, so $y=\dfrac{1}{3}e^{x^3}+C$. Using $(0,1)$: $1=\dfrac{1}{3}+C \Rightarrow C=\dfrac{2}{3}$. Hence $3y-2=e^{x^3} \Rightarrow x^3=\log_e(3y-2)$, so $x=\sqrt[3]{\log_e(3y-2)}$.

Jamia Millia Islamia PYQ
$\displaystyle \int \frac{dx}{x\log x\;\log(\log x)}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Put $t=\log x$, then $dt=\frac{dx}{x}$; next $u=\log t$, $du=\frac{dt}{t}$. Integral becomes $\int \frac{du}{u}=\log u=\log(\log(\log x))+C$.

Jamia Millia Islamia PYQ
$\displaystyle \int x^{x}(1+\log x)\,dx$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{d}{dx}\big(x^{x}\big)=x^{x}(1+\log x)$ (log = natural log). Hence integral $=x^{x}+C$.

Jamia Millia Islamia PYQ
$\displaystyle \int \sqrt{x}e^{\sqrt{x}}dx$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Let $t=\sqrt{x}$, $dx=2t\,dt$. Then $\int 2t^{2}e^{t}dt=2e^{t}(t^{2}-2t+2)+C$. Substitute $t=\sqrt{x}$ ⇒ $(2x-4\sqrt{x}+4)e^{\sqrt{x}}+C$.

Jamia Millia Islamia PYQ
$\displaystyle \int x^{2}\sin(x^{3}),dx =$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Let $u=x^{3}\Rightarrow du=3x^{2}dx\Rightarrow x^{2}dx=\tfrac{1}{3}du$. $\int x^{2}\sin(x^{3})dx=\tfrac13\int\sin u,du=-\tfrac13\cos x+C.$

Jamia Millia Islamia PYQ
Value of $\displaystyle \int e^{x^2} \left( \frac{1}{x} - \frac{1}{2x^2} \right) dx$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let $I = \int e^{x^2}\left(\frac{1}{x} - \frac{1}{2x^2}\right)dx$. Differentiate $e^{x^2}/x$: $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{x}\right) = e^{x^2}\left(2 - \dfrac{1}{x^2}\right)$. Thus, $I$ can be expressed as a part of $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{2x}\right)$, and on integration we get: $I = \dfrac{e^{x^2}(e^2 - 2)}{2} + C$.

Jamia Millia Islamia PYQ
$\displaystyle \int \frac{d\theta}{1 - \tan\theta}$ equals:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let $I = \int \frac{d\theta}{1 - \tan\theta}$. Multiply numerator and denominator by $\cos\theta$: $I = \int \frac{\cos\theta\,d\theta}{\cos\theta - \sin\theta}$. Let $u = \cos\theta - \sin\theta \Rightarrow du = -(\sin\theta + \cos\theta)d\theta$. Rewrite and integrate ⇒ $I = \dfrac{1}{2}\log|\cos\theta + \sin\theta| + C$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...