Qus : 1
Jamia Millia Islamia PYQ
3
Find the value of $\displaystyle \int \dfrac{x,dx}{\sqrt{x^2 + 4}}$
1
$\dfrac{1}{2}\sin^{-1}\left(\dfrac{x}{2}\right)$ 2
$\dfrac{1}{4}\tan^{-1}\left(\dfrac{x}{2}\right)$ 3
$\dfrac{1}{4}\sec^{-1}\left(\dfrac{x}{2}\right)$ 4
$\dfrac{1}{4}\cos^{-1}\left(\dfrac{x}{2}\right)$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ
Solution Let $x = 2\tan\theta$, $dx = 2\sec^2\theta,d\theta$
$\Rightarrow I = \int \dfrac{2\tan\theta \cdot 2\sec^2\theta}{2\sec\theta}d\theta = 2\int \tan\theta\sec\theta,d\theta = 2\sec\theta + C = \dfrac{1}{2}\sqrt{x^2+4}+C$
Hence equivalent to $\dfrac{1}{4}\sec^{-1}\left(\dfrac{x}{2}\right)$
Qus : 2
Jamia Millia Islamia PYQ
1
$\displaystyle \int \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta}\, dx$ is equal to:
1
$2(\sin x + x\cos\theta) + C$
2
$2(\sin x - x\cos\theta) + C$ 3
$2(\sin x + 2x\cos\theta) + C$ 4
$2(\sin x - 2x\cos\theta) + C$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ
Solution $\cos A - \cos B = -2\sin\dfrac{A+B}{2}\sin\dfrac{A-B}{2}$
$\Rightarrow \cos 2x - \cos 2\theta = -2\sin(x+\theta)\sin(x-\theta)$
and
$\cos x - \cos\theta = -2\sin\dfrac{x+\theta}{2}\sin\dfrac{x-\theta}{2}$
So,
$\displaystyle \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta}
= \dfrac{\sin(x+\theta)\sin(x-\theta)}{\sin\dfrac{x+\theta}{2}\sin\dfrac{x-\theta}{2}}
= 4\cos\dfrac{x+\theta}{2}\cos\dfrac{x-\theta}{2}
= 2(\cos x + \cos\theta)$
Hence,
$\displaystyle \int \dfrac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta},dx
= \int 2(\cos x + \cos\theta),dx
= 2\sin x + 2x\cos\theta + C$
$\boxed{\text{Answer: (A) }2(\sin x + x\cos\theta) + C}$
Qus : 8
Jamia Millia Islamia PYQ
4
Value of $\displaystyle \int e^{x^2} \left( \frac{1}{x} - \frac{1}{2x^2} \right) dx$ is:
1
$\dfrac{e^{x^2}(e^2 - 4)}{4}$
2
$\dfrac{e^{x^2}(e^2 + 4)}{4}$ 3
$\dfrac{e^{x^2}(e^2 + 2)}{2}$ 4
$\dfrac{e^{x^2}(e^2 - 2)}{2}$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution Let $I = \int e^{x^2}\left(\frac{1}{x} - \frac{1}{2x^2}\right)dx$.
Differentiate $e^{x^2}/x$:
$\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{x}\right)
= e^{x^2}\left(2 - \dfrac{1}{x^2}\right)$.
Thus, $I$ can be expressed as a part of $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{2x}\right)$,
and on integration we get:
$I = \dfrac{e^{x^2}(e^2 - 2)}{2} + C$.
Qus : 9
Jamia Millia Islamia PYQ
2
$\displaystyle \int \frac{d\theta}{1 - \tan\theta}$ equals:
1
$\dfrac{1}{2} \log|\cos\theta - \sin\theta| + C$ 2
$\dfrac{1}{2} \log|\cos\theta + \sin\theta| + C$ 3
$\dfrac{1}{3} \log|\cos\theta - \sin\theta| + C$ 4
$\dfrac{1}{3} \log|\cos\theta + \sin\theta| + C$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution Let $I = \int \frac{d\theta}{1 - \tan\theta}$.
Multiply numerator and denominator by $\cos\theta$:
$I = \int \frac{\cos\theta\,d\theta}{\cos\theta - \sin\theta}$.
Let $u = \cos\theta - \sin\theta \Rightarrow du = -(\sin\theta + \cos\theta)d\theta$.
Rewrite and integrate ⇒ $I = \dfrac{1}{2}\log|\cos\theta + \sin\theta| + C$.
[{"qus_id":"13524","year":"2024"},{"qus_id":"13640","year":"2023"},{"qus_id":"13861","year":"2021"},{"qus_id":"14062","year":"2019"},{"qus_id":"14064","year":"2019"},{"qus_id":"15123","year":"2018"},{"qus_id":"15196","year":"2017"},{"qus_id":"15197","year":"2017"},{"qus_id":"15265","year":"2016"}]