Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Value of $\displaystyle \int e^{x^2} \left( \frac{1}{x} - \frac{1}{2x^2} \right) dx$ is:





Solution

Let $I = \int e^{x^2}\left(\frac{1}{x} - \frac{1}{2x^2}\right)dx$. Differentiate $e^{x^2}/x$: $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{x}\right) = e^{x^2}\left(2 - \dfrac{1}{x^2}\right)$. Thus, $I$ can be expressed as a part of $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{2x}\right)$, and on integration we get: $I = \dfrac{e^{x^2}(e^2 - 2)}{2} + C$.


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...