A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
4
Value of $\displaystyle \int e^{x^2} \left( \frac{1}{x} - \frac{1}{2x^2} \right) dx$ is:
Solution
Let $I = \int e^{x^2}\left(\frac{1}{x} - \frac{1}{2x^2}\right)dx$.
Differentiate $e^{x^2}/x$:
$\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{x}\right)
= e^{x^2}\left(2 - \dfrac{1}{x^2}\right)$.
Thus, $I$ can be expressed as a part of $\dfrac{d}{dx}\left(\dfrac{e^{x^2}}{2x}\right)$,
and on integration we get:
$I = \dfrac{e^{x^2}(e^2 - 2)}{2} + C$.
Online Test Series, Information About Examination, Syllabus, Notification and More.