Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Function PYQ


Jamia Millia Islamia PYQ
If $[x^2] - 5[x] + 6 = 0$, where $[\,]$ denotes the greatest integer function, then





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $[x] = n$. Then $[x^2] = n^2$ (since $x^2$ lies between $n^2$ and $(n+1)^2$). Equation: $n^2 - 5n + 6 = 0$ $\Rightarrow (n - 2)(n - 3) = 0$ $\Rightarrow n = 2$ or $n = 3$ For $n = 2 \Rightarrow x \in [2,3)$ For $n = 3 \Rightarrow x \in [3,4)$ Hence $x \in [2,4)$

Jamia Millia Islamia PYQ
The minimum value of $4^x + 4^{1-x},\ x \in \mathbb{R}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $4^x = t,\ t > 0$. Then expression $= t + \dfrac{4}{t}$. By AM ≥ GM, $t + \dfrac{4}{t} \ge 2\sqrt{t \cdot \dfrac{4}{t}} = 4.$ Equality when $t = 2$, i.e., $4^x = 2 \Rightarrow x = \dfrac{1}{2}$. $\boxed{\text{Answer: (B) 4}}$

Jamia Millia Islamia PYQ
Let $f(x) = x - [x]$, where $[\,]$ denotes the greatest integer function. Then $f\left(\dfrac{5}{2}\right)$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

We have $x = \dfrac{5}{2} = 2.5$ $[x] = 2$ So, $f(x) = x - [x] = 2.5 - 2 = 0.5$ $\boxed{\text{Answer: (A) }\dfrac{3}{2}}$

Jamia Millia Islamia PYQ
The floor function $[x]$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

The floor function $f(x) = [x]$ maps every real number to the greatest integer less than or equal to $x$. Different real numbers can have the same floor value, so it is not one-to-one, but for every integer $n \in \mathbb{Z}$, there exists an $x \in \mathbb{R}$ such that $[x]=n$. Hence, it is onto but not one-to-one.

Jamia Millia Islamia PYQ
The domain of the real-valued function $f(x) = \sqrt{x - 3} + \sqrt{x - 4}$ is the set of all values of $x$ satisfying





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

For $f(x)$ to be real, both radicals must be defined: $x - 3 \ge 0 \quad \text{and} \quad x - 4 \ge 0$ $\Rightarrow x \ge 4$ So the domain is $[4, \infty)$.

Jamia Millia Islamia PYQ
Let $f:\mathbb{R}\to\mathbb{R},\; g:\mathbb{R}\to\mathbb{R}$ be given by $f(x)=2x-3$ and $g(x)=x/2$. Then $(f\circ g)^{-1}(x)$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$(f\circ g)(x)=f(x/2)=x-3$. Its inverse solves $y=x-3\Rightarrow x=y+3$, so $(f\circ g)^{-1}(x)=x+3$.

Jamia Millia Islamia PYQ
Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=x^{2}+5$. Then the value of $f^{-1}(4)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Range of $x^{2}+5$ is $[5,\infty)$. Since $4$ is not in the range, $f^{-1}(4)$ does not exist.

Jamia Millia Islamia PYQ
If $g:\mathbb{R}\to\mathbb{R}$ is defined by $g(x)=x^{2}-2$, then the value of $g^{-1}(23)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Solve $x^{2}-2=23 \Rightarrow x^{2}=25 \Rightarrow x=\pm5$.

Jamia Millia Islamia PYQ
The value of $[1/2][5/2]$ is.....





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Here, $[x]$ denotes the greatest integer function (GIF). $[1/2] = 0$, and $[5/2] = 2$. Therefore, $[1/2][5/2] = 0 \times 2 = 0.$

Jamia Millia Islamia PYQ
If $f(x)=ax^7+bx^3+cx-5$, where $a,b,c$ are real constants, and $f(-7)=7$, then the range of $f(7)+17\cos x$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

$f(7)=-(f(-7))= -7 + 10 = 27$ (since odd-powered terms change sign). Actually, $f(7)=-f(-7)-10=...$ simplifying gives $f(7)=17$. Then $f(7)+17\cos x = 17 + 17\cos x$. Range = $[17-17,17+17]=[0,34]$.

Jamia Millia Islamia PYQ
The domain of $\sqrt{|x-2|-1}+\sqrt{\,3-|x-2|\,}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

$\sqrt{|x-2|-1}$ needs $|x-2|\ge1\Rightarrow x\le1$ or $x\ge3$. $\sqrt{3-|x-2|}$ needs $|x-2|\le3\Rightarrow x\in[-1,5]$. Intersection $\Rightarrow [-1,1]\cup[3,5]$.

Jamia Millia Islamia PYQ
If $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = 3x$, then what type of function is $f$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Number of equivalence relations = Number of partitions of the set = Bell number $B_3 = 5$.

Jamia Millia Islamia PYQ
Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \dfrac{1}{x}$, $\forall x \in \mathbb{R}$. Then $f$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$f(x) = \dfrac{1}{x}$ is not defined for $x = 0$, hence it’s not a function from $\mathbb{R} \to \mathbb{R}$. If domain were $\mathbb{R} - {0}$, then it would be bijective.

Jamia Millia Islamia PYQ
The function $f:[0,3] \to [1,29]$ defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x-2)(x-3).$ Sign chart: • $f'$ > 0 for $x<2$; $f'$ < 0 for $2

Jamia Millia Islamia PYQ
If $f:\mathbb{R}\to\mathbb{R}$ is given by $f(x) = (3 - x^3)^{1/3}$, then $f(f(f(f(x))))$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let $y=f(x)=(3 - x^3)^{1/3}$. Then $f(f(x)) = (3 - y^3)^{1/3} = (3 - (3 - x^3))^{1/3} = x$. Hence $f(f(f(f(x)))) = f(f(x)) = x$.

Jamia Millia Islamia PYQ
Consider two functions $f(x)$ and $g(x)$ such that $f(x) = |x| + [x]$ and $g(x) = |x|[x]$, where $[x]$ denotes the greatest integer function.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

At $x=1^-$: $f(x)=|x|+[x]=1+0=1$; at $x=1$: $f(1)=|1|+[1]=2$. ⇒ jump ⇒ discontinuous. $g(x)=|x|[x]$: at $x=1^-$ → $1×0=0$; at $x=1$ → $1×1=1$. ⇒ discontinuous.

Jamia Millia Islamia PYQ
Two men on a 3-D surface want to meet each other. The surface is given by $f(x,y) = \dfrac{x - 6y}{x + y}$ They move horizontally/vertically; one starts at $(200,400)$, other at $(100,100)$; meeting point $(0,0)$.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Both follow straight lines through origin → they meet.

Jamia Millia Islamia PYQ
The graph of $y=f(x)$ is symmetrical about line $x=2$.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

For symmetry about $x=2$, $f(2+x)=f(2-x)$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...