If $x, y, z$ are all different from zero and
$\begin{vmatrix}
1 + x & 1 & 1 \\
1 & 1 + y & 1 \\
1 & 1 & 1 + z
\end{vmatrix} = 0$,
then the value of $x^{-1} + y^{-1} + z^{-1}$ is:
If $
\begin{vmatrix}
a & p & x \\
b & q & y \\
c & r & z
\end{vmatrix}
= 16
$, then the value of
$
\begin{vmatrix}
p+q & a+x & a+p \\
q+y & b+y & b+q \\
x+z & c+z & c+r
\end{vmatrix}
$ is:
By properties of determinants,
each column in the second determinant is the **sum of two columns** of the first.
So its value remains the same (since addition of columns preserves linearity).
Hence $\boxed{16}$.
If $A,B,C$ are angles of a triangle, then the value of
$
\begin{vmatrix}
\sin 2A & \sin C & \sin B \\
\sin C & \sin 2B & \sin A \\
\sin B & \sin A & \sin 2C
\end{vmatrix}
$
is:
** Since $A+B+C=\pi$, we have
$\cos A=-\cos(B+C)=\sin B\sin C-\cos B\cos C$ and similarly for $B,C$.
Using $\sin 2A=2\sin A\cos A$ (and cyclic forms), each row becomes a
linear combination of the other two rows, so the rows are linearly
dependent. Hence the determinant is $0$.
$\boxed{0}$
For $f(x)$ increasing ⇒ $f'(x) \ge 0$ for all $x$.
$f'(x) = 3x^2 + 2a x + b + 15\sin^2 x \cos x$
The minimum value of $\sin^2 x \cos x$ is $-2/3\sqrt{3}$ but to keep derivative always positive,
the quadratic part $3x^2 + 2a x + b$ must be non-negative $\forall x$.
Condition: discriminant $\le 0$
$\Rightarrow (2a)^2 - 4(3)(b - 15) \le 0$
$\Rightarrow a^2 - 3b + 15 \le 0$.