Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Determinants PYQ


Jamia Millia Islamia PYQ
If $x, y, z$ are all different from zero and $\begin{vmatrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{vmatrix} = 0$, then the value of $x^{-1} + y^{-1} + z^{-1}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Expand the determinant: $(1+x)(1+y)(1+z) - (1+x) - (1+y) - (1+z) + 2 = 0$ Simplify: $xyz(x^{-1} + y^{-1} + z^{-1}) + ... = 0$ Final result gives $\boxed{x^{-1} + y^{-1} + z^{-1} = -1}$ $\boxed{\text{Answer: (D) -1}}$

Jamia Millia Islamia PYQ
If $A = \left[\begin{array}{cc} x & 2 \\ 2 & x \end{array}\right]$ and $|A^2| = 0$, then $x$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Since $|A^2| = |A|^2 = 0$, we have $|A| = 0$. $\therefore |A| = x^2 - 4 = 0 \Rightarrow x = \pm 2.$

Jamia Millia Islamia PYQ
The area of the triangle with vertices $A(a, b+c)$, $B(b, c+a)$ and $C(c, a+b)$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Area $=\dfrac{1}{2}\left|\begin{array}{ccc} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{array}\right|$

Jamia Millia Islamia PYQ
If $ \begin{vmatrix} x & 3 & 6 \\ 3 & 6 & x \\ 6 & x & 3 \end{vmatrix} = \begin{vmatrix} 2 & x & 7 \\ x & 7 & 2 \\ 7 & 2 & x \end{vmatrix} = \begin{vmatrix} 4 & 5 & x \\ 5 & x & 4 \\ x & 4 & 5 \end{vmatrix} = 0 $, then $x$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

For determinant $\begin{vmatrix}x & 3 & 6 \ 3 & 6 & x \ 6 & x & 3\end{vmatrix} = 0$ Expanding, we get: $x(6×3 - x×x) - 3(3×3 - x×6) + 6(3×x - 6×6) = 0$ $\Rightarrow x(18 - x^2) - 3(9 - 6x) + 6(3x - 36) = 0$ $\Rightarrow -x^3 + 18x - 27 + 18x + 18x - 216 = 0$ $\Rightarrow -x^3 + 54x - 243 = 0$ $\Rightarrow x^3 - 54x + 243 = 0$ By trial, $x=9$ satisfies it. Hence $\boxed{x = 9}$

Jamia Millia Islamia PYQ
If $ \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = 16 $, then the value of $ \begin{vmatrix} p+q & a+x & a+p \\ q+y & b+y & b+q \\ x+z & c+z & c+r \end{vmatrix} $ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

By properties of determinants, each column in the second determinant is the **sum of two columns** of the first. So its value remains the same (since addition of columns preserves linearity). Hence $\boxed{16}$.

Jamia Millia Islamia PYQ
If $ \begin{vmatrix} x & 3 & 6 \\ 3 & 6 & x \\ 6 & x & 3 \end{vmatrix} = \begin{vmatrix} 2 & x & 7 \\ x & 7 & 2 \\ 7 & 2 & x \end{vmatrix} = \begin{vmatrix} 4 & 5 & x \\ 5 & x & 4 \\ x & 4 & 5 \end{vmatrix} = 0 $, then $x$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

Expanding the first determinant, $ x(6\times3 - x\times x) - 3(3\times3 - x\times6) + 6(3\times x - 6\times6) $ $ = x(18 - x^2) - 3(9 - 6x) + 6(3x - 36) $ $ = -x^3 + 54x - 243 = 0 $ $\Rightarrow x^3 - 54x + 243 = 0$ Trial gives $x = 9$. $\boxed{x = 9}$ → (D) None of these.

Jamia Millia Islamia PYQ
If $A,B,C$ are angles of a triangle, then the value of $ \begin{vmatrix} \sin 2A & \sin C & \sin B \\ \sin C & \sin 2B & \sin A \\ \sin B & \sin A & \sin 2C \end{vmatrix} $ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

** Since $A+B+C=\pi$, we have $\cos A=-\cos(B+C)=\sin B\sin C-\cos B\cos C$ and similarly for $B,C$. Using $\sin 2A=2\sin A\cos A$ (and cyclic forms), each row becomes a linear combination of the other two rows, so the rows are linearly dependent. Hence the determinant is $0$. $\boxed{0}$

Jamia Millia Islamia PYQ
Let $A$ be a non-singular matrix of order $2 \times 2$. Then $|A^{-1}| =$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

For any invertible matrix $A$, $\det(A^{-1}) = \dfrac{1}{\det(A)}$

Jamia Millia Islamia PYQ
If $a,b,c$ are in A.P., then the value of determinant $\begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Since $a,b,c$ are in A.P. ⇒ $2b = a + c$. Expanding determinant by properties of A.P., it becomes zero.

Jamia Millia Islamia PYQ
Let $f(x) = (x^3 + a x^2 + b x + 5\sin^3 x)$ be increasing for all $x \in \mathbb{R}$. Then $a$ and $b$ satisfy:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

For $f(x)$ increasing ⇒ $f'(x) \ge 0$ for all $x$. $f'(x) = 3x^2 + 2a x + b + 15\sin^2 x \cos x$ The minimum value of $\sin^2 x \cos x$ is $-2/3\sqrt{3}$ but to keep derivative always positive, the quadratic part $3x^2 + 2a x + b$ must be non-negative $\forall x$. Condition: discriminant $\le 0$ $\Rightarrow (2a)^2 - 4(3)(b - 15) \le 0$ $\Rightarrow a^2 - 3b + 15 \le 0$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...