Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Complex Number PYQ


Jamia Millia Islamia PYQ
The value of $\tan 3A - \tan 2A - \tan A$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Since $1^\circ = \dfrac{\pi}{180}$ radians and $\sin x$ increases for small $x$ in radians, $\sin(1^\circ) = \sin\left(\dfrac{\pi}{180}\right) \approx 0.01745 < \sin(1 \text{ rad}) \approx 0.841$. Hence, $\sin 1^\circ < \sin 1$.

Jamia Millia Islamia PYQ
Number of unimodular complex numbers which satisfy the locus $\arg\!\left(\dfrac{z - 1}{z + i}\right) = \dfrac{\pi}{2}$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Let $z = x + iy$ and $|z| = 1$. The given condition means $(z - 1)$ is perpendicular to $(z + i)$. \[ (x - 1, y) \cdot (x, y + 1) = 0 \Rightarrow x^2 - x + y^2 + y = 0 \] Since $x^2 + y^2 = 1$ (unimodular), \[ 1 - x + y = 0 \Rightarrow y = x - 1. \] Substitute in $x^2 + y^2 = 1$: \[ x^2 + (x - 1)^2 = 1 \Rightarrow 2x^2 - 2x = 0 \Rightarrow x(x - 1) = 0. \] Hence $x = 0$ or $x = 1$. For $x = 0$, $z = -i$ (denominator $z+i=0$). For $x = 1$, $z = 1$ (numerator $z-1=0$). Both make $\arg$ undefined. Therefore, no unimodular complex number satisfies the condition.

Jamia Millia Islamia PYQ
The tens digit of $1! + 2! + 3! + 4! + \dots + 49!$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

From $10!$ onward, every factorial ends with at least two zeros. So, only the sum of first nine factorials affects the tens digit. $1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9! = 1 + 2 + 6 + 24 + 120 + 720 + 5040 + 40320 + 362880 = 409113.$ Tens digit = $\boxed{1}.$

Jamia Millia Islamia PYQ
If $\omega$ is a cube root of unity, then $\left|\begin{array}{ccc} 1 & \omega & \omega^2 \\ 1 & \omega^2 & 1 \\ \omega & 1 & \omega^2 \end{array}\right|$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Use $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$. Evaluating the determinant gives value $= -3$.

Jamia Millia Islamia PYQ
If $49^{n}+16n+\lambda$ is divisible by $64$ for all $n\in\mathbb{N}$, then the least negative value of $\lambda$ is –





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Solution: Work modulo $64$. $49\equiv -15\pmod{64}$ and $49^{1}\equiv49,\ 49^{2}\equiv33,\ 49^{3}\equiv17,\ 49^{4}\equiv1$; hence $49^{n}$ is periodic with period $4$. Also $16n\equiv 0,16,32,48\ (\bmod\ 64)$ for $n\equiv 0,1,2,3$. For each residue class: $n\equiv0$: $1+0+\lambda\equiv0\Rightarrow \lambda\equiv -1$ $n\equiv1$: $49+16+\lambda\equiv1+\lambda\equiv0$ $n\equiv2$: $33+32+\lambda\equiv1+\lambda\equiv0$ $n\equiv3$: $17+48+\lambda\equiv1+\lambda\equiv0$ All give $\lambda\equiv -1\pmod{64}$. The least negative representative is $\boxed{-1}$.

Jamia Millia Islamia PYQ
Let $z=\sqrt{3}+i$ be a complex number and $\bar z$ its conjugate. The $|\arg z|+|\arg \bar z|$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\arg z = \tan^{-1}\!\left(\frac{1}{\sqrt3}\right)=\frac{\pi}{6}$ (I quadrant), $\arg\bar z = -\frac{\pi}{6}$. Sum of absolute values $=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$.

Jamia Millia Islamia PYQ
The $\dfrac{(\sqrt3+i)^{17}}{(1-i)^{50}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sqrt{3}+i = 2(\cos\tfrac{\pi}{6} + i\sin\tfrac{\pi}{6}) \Rightarrow (\sqrt{3}+i)^{17} = 2^{17}\left[\cos\tfrac{17\pi}{6} + i\sin\tfrac{17\pi}{6}\right] = 2^{16}(-\sqrt{3}+i).$ $1 - i = \sqrt{2}(\cos(-\tfrac{\pi}{4}) + i\sin(-\tfrac{\pi}{4})) \Rightarrow (1-i)^{50} = 2^{25}\left[\cos(-\tfrac{25\pi}{2}) + i\sin(-\tfrac{25\pi}{2})\right] = -i\,2^{25}.$ $\text{Ratio} = 2^{-9}\dfrac{-\sqrt{3}+i}{-i} = 2^{-9}(-1-\sqrt{3}i).$

Jamia Millia Islamia PYQ
For which value of $x$, $\left(\dfrac{1+i}{1-i}\right)^{x}=1$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{1+i}{1-i}=i$. So $i^{x}=1\Rightarrow x\equiv0\pmod4$. Only $68$ is a multiple of $4$.

Jamia Millia Islamia PYQ
If $\omega$ is a cube root of unity, the value of $(1-\omega-\omega^{2})(1+\omega^{3})$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\omega^{3}=1$ and $\omega+\omega^{2}=-1$. So $1-\omega-\omega^{2}=2$ and $1+\omega^{3}=2$; product $=4$.

Jamia Millia Islamia PYQ
If $\left(\dfrac{1+i}{1-i}\right)^{x}=1$, then





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution


Jamia Millia Islamia PYQ
Let $z$ be a complex number. Which of the following is a solution of $|z|-z=1+2i$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $z=x+iy$. Then $|z|-x-iy=1+2i \Rightarrow |z|-x=1,\; -y=2\Rightarrow y=-2$. $|z|=1+x$, and $(1+x)^{2}=x^{2}+4 \Rightarrow x=\tfrac{3}{2}$. Thus $z=\tfrac{3}{2}-2i$.

Jamia Millia Islamia PYQ
Which of the following expresses the given complex number $(1 - i)^4$ in the form $(a + ib)$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

$(1 - i)^4 = (1 - i)^2 \times (1 - i)^2$ $= (1 - 2i + i^2)^2 = (1 - 2i - 1)^2 = (-2i)^2 = -4$

Jamia Millia Islamia PYQ
The product of complex numbers $(4,3)$ and $(5,-6)$ is?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

$(4 + 3i)(5 - 6i) = 20 - 24i + 15i - 18i^2 = 20 - 9i + 18 = 38 - 9i.$

Jamia Millia Islamia PYQ
The amplitude of $\dfrac{1+i\sqrt{3}}{\sqrt{3}+i}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\dfrac{1+i\sqrt{3}}{\sqrt{3}+i} = \dfrac{(1+i\sqrt{3})(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)} = \dfrac{(\sqrt{3}+3)i + (\sqrt{3}-1)}{4}$. Hence, $\tan\theta = \dfrac{\text{Imag}}{\text{Real}} = \dfrac{\sqrt{3}+3}{\sqrt{3}-1} = \tan\left(\dfrac{\pi}{3}\right)$.

Jamia Millia Islamia PYQ
If $z$ be a complex number and $\bar{z}$ be its conjugate, then the number of solutions of $z^{2} + 2\bar{z} = 0$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Let $z = x + iy$, then $\bar{z} = x - iy$. Substitute: $(x + iy)^{2} + 2(x - iy) = 0$. $\Rightarrow x^{2} - y^{2} + 2ixy + 2x - 2iy = 0$. Equating real and imaginary parts: Real: $x^{2} - y^{2} + 2x = 0$ Imag: $2xy - 2y = 0 \Rightarrow y( x - 1 ) = 0$. If $y=0$, then $x^{2} + 2x = 0 \Rightarrow x = 0, -2$. If $x=1$, then $1 - y^{2} + 2 = 0 \Rightarrow y^{2} = 3$. Hence, total 4 solutions.

Jamia Millia Islamia PYQ
If $z$ be a complex number, then one of the solutions of the equation $z^{2} + |z|^{2} = 0$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Let $z = x + iy$, then $|z|^{2} = x^{2} + y^{2}$. So, $(x + iy)^{2} + x^{2} + y^{2} = 0$. $\Rightarrow (2x^{2} - y^{2}) + 2ixy = 0 \Rightarrow 2x^{2} - y^{2} = 0, 2xy = 0$. If $x = 0$, then $-y^{2} = 0 \Rightarrow y = 0$. If $y = 0$, then $2x^{2} = 0 \Rightarrow x = 0$. Non-trivial solution: $x = y = 0$. So we take $z = i\sqrt{2}|x|$ form. $z = 2 + 3i$ satisfies the given equation.

Jamia Millia Islamia PYQ
If $\omega$ is a cube root of unity, then the value of $(1 + \omega - \omega^{2})(1 - \omega + \omega^{2})$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

We know $\omega^{3} = 1$ and $1 + \omega + \omega^{2} = 0$. Expanding: $(1 + \omega - \omega^{2})(1 - \omega + \omega^{2}) = 1 - \omega^{2} + \omega^{4} - \omega + \omega^{2} - \omega^{3} + \omega^{2} - \omega^{3} + \omega^{4} = 1 + 3 = 3.$

Jamia Millia Islamia PYQ
Let cube roots of unity be $1, \omega, \omega^{2}$. Which of the following is a cube root of the equation $(x - 1)^{3} + 8 = 0$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$(x - 1)^{3} = -8 \Rightarrow x - 1 = 2\omega^{k}$ where $k = 0, 1, 2$. So, $x = 1 + 2\omega^{k}$. For $k = 2$, $x = 1 - 2\omega^{2}$.

Jamia Millia Islamia PYQ
If $z$ is any complex number with $|z-3-2i|\le2$, then the minimum of $|\,2z-6+5i\,|$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

Put $w=z-(3+2i)$ so $|w|\le2$. Then $2z-6+5i=2w+9i$. Set of $2w$ is a disc of radius $4$ centered at $0$, so $2w+9i$ is a disc of radius $4$ centered at $9i$. Minimum modulus $=\big||9|-4\big|=5$.

Jamia Millia Islamia PYQ
For $z\ne0$, the value of $\arg z+\arg\overline{z}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

$\arg(\overline{z})=-\arg(z)$ (principal values). Hence sum $=0$.

Jamia Millia Islamia PYQ
The number of complex numbers $Z$ such that $|Z - 1| = |Z + 1| = |Z - i|$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$|Z - 1| = |Z + 1|$ represents the perpendicular bisector of the line joining $(1,0)$ and $(-1,0)$, i.e. the $y$–axis. For points on the $y$–axis, $Z = i y$. Now $|Z - i| = |i y - i| = |i(y - 1)| = |y - 1|$. Also $|Z + 1| = \sqrt{1 + y^2}$. So $\sqrt{1 + y^2} = |y - 1| \Rightarrow y = 0$. Thus only one point satisfies — $Z = 0$.

Jamia Millia Islamia PYQ
If $\omega$ is a cube root of unity and $(1 + \omega)^7 = A + B\omega$, then $A + B$ equals:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

We know $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$. So $1 + \omega = -\omega^2$. Hence $(1 + \omega)^7 = (-\omega^2)^7 = (-1)^7 \omega^{14} = -\omega^{14}$. Now $\omega^{14} = \omega^{3 \times 4 + 2} = \omega^2$. Therefore $(1 + \omega)^7 = -\omega^2 = 1 + \omega$. So comparing with $A + B\omega$, we have $A = 1$, $B = 1$. $\Rightarrow A + B = 2.$

Jamia Millia Islamia PYQ
If $|z_1| = 4,\ |z_2| = 3$, then what is the value of $|z_1 + z_2 + 3 + 4i|$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Using triangle inequality,

z1+z2+3+4iz1+z2+3+4i=4+3+5=12.|z_1 + z_2 + 3 + 4i| \le |z_1| + |z_2| + |3 + 4i| = 4 + 3 + 5 = 12.

Hence, value is less than 12.


Jamia Millia Islamia PYQ
If $\omega$ is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ equals





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

$1+\omega+\omega^2=0 \Rightarrow 1+\omega-\omega^2=2\omega.$ $(2\omega)^7 = 128\omega^7 = 128\omega.$

Jamia Millia Islamia PYQ
The complex numbers $\sin x + i\cos 2x$ and $\cos x - i\sin 2x$ are conjugate to each other for A. $x = n\pi$ B. $x = 0$ C. $x = (n + \tfrac{1}{2})\pi$ D. No value of $x$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Conjugates ⇒ $\cos 2x = \sin x \Rightarrow x = (n + \tfrac{1}{2})\pi.$

Jamia Millia Islamia PYQ
The points $z_1, z_2, z_3, z_4$ in the complex plane form a parallelogram if and only if





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Diagonals bisect each other ⇒ $z_1 + z_3 = z_2 + z_4.$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...