From $10!$ onward, every factorial ends with at least two zeros.
So, only the sum of first nine factorials affects the tens digit.
$1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9! = 1 + 2 + 6 + 24 + 120 + 720 + 5040 + 40320 + 362880 = 409113.$
Tens digit = $\boxed{1}.$
If $\omega$ is a cube root of unity, then
$\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
1 & \omega^2 & 1 \\
\omega & 1 & \omega^2
\end{array}\right|$
is equal to
Solution:
Work modulo $64$.
$49\equiv -15\pmod{64}$ and
$49^{1}\equiv49,\ 49^{2}\equiv33,\ 49^{3}\equiv17,\ 49^{4}\equiv1$;
hence $49^{n}$ is periodic with period $4$.
Also $16n\equiv 0,16,32,48\ (\bmod\ 64)$ for $n\equiv 0,1,2,3$.
For each residue class:
$n\equiv0$: $1+0+\lambda\equiv0\Rightarrow \lambda\equiv -1$
$n\equiv1$: $49+16+\lambda\equiv1+\lambda\equiv0$
$n\equiv2$: $33+32+\lambda\equiv1+\lambda\equiv0$
$n\equiv3$: $17+48+\lambda\equiv1+\lambda\equiv0$
All give $\lambda\equiv -1\pmod{64}$.
The least negative representative is $\boxed{-1}$.
$\arg z = \tan^{-1}\!\left(\frac{1}{\sqrt3}\right)=\frac{\pi}{6}$ (I quadrant),
$\arg\bar z = -\frac{\pi}{6}$. Sum of absolute values $=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$.
Let $z=x+iy$. Then $|z|-x-iy=1+2i \Rightarrow |z|-x=1,\; -y=2\Rightarrow y=-2$.
$|z|=1+x$, and $(1+x)^{2}=x^{2}+4 \Rightarrow x=\tfrac{3}{2}$.
Thus $z=\tfrac{3}{2}-2i$.
Put $w=z-(3+2i)$ so $|w|\le2$. Then
$2z-6+5i=2w+9i$.
Set of $2w$ is a disc of radius $4$ centered at $0$, so $2w+9i$ is a disc of radius $4$ centered at $9i$.
Minimum modulus $=\big||9|-4\big|=5$.
$|Z - 1| = |Z + 1|$ represents the perpendicular bisector of the line joining $(1,0)$ and $(-1,0)$, i.e. the $y$–axis.
For points on the $y$–axis, $Z = i y$.
Now $|Z - i| = |i y - i| = |i(y - 1)| = |y - 1|$.
Also $|Z + 1| = \sqrt{1 + y^2}$.
So $\sqrt{1 + y^2} = |y - 1| \Rightarrow y = 0$.
Thus only one point satisfies — $Z = 0$.
The complex numbers $\sin x + i\cos 2x$ and $\cos x - i\sin 2x$ are conjugate to each other for
A. $x = n\pi$ B. $x = 0$ C. $x = (n + \tfrac{1}{2})\pi$ D. No value of $x$