Qus : 1
Jamia Millia Islamia PYQ
3
The equation of a circle with origin as centre and passing through the vertices of an equ
1
$x^2 + y^2 = 9a^2$ 2
$x^2 + y^2 = 16a^2$ 3
$x^2 + y^2 = 4a^2$ 4
$x^2 + y^2 = a^2$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ
Solution Median of equilateral triangle = $\dfrac{\sqrt{3}}{2} \times \text{side}$
$\Rightarrow 3a = \dfrac{\sqrt{3}}{2} \times \text{side}$
$\Rightarrow \text{side} = 2\sqrt{3}a$
Radius (distance from centre to vertex) = $\dfrac{\text{side}}{\sqrt{3}} = 2a$.
Equation: $x^2 + y^2 = (2a)^2 = 4a^2$.
$\boxed{\text{Answer: (C) }x^2 + y^2 = 4a^2}$
Qus : 2
Jamia Millia Islamia PYQ
3
From the point $A(3,2)$, a line is drawn to any point on the circle $x^2 + y^2 = 1$.
If the locus of the midpoint of this line segment is a circle, then its radius is:
1
$\dfrac{\sqrt{13}}{2}$
2
$\dfrac{1}{2}$ 3
$\dfrac{\sqrt{11}}{2}$
4
$\dfrac{1}{4}$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ
Solution
**Solution:**
Let $P(x_1, y_1)$ be a point on $x^2 + y^2 = 1$.
Midpoint $M$ of $AP$ is
\[
\left(\dfrac{x_1 + 3}{2}, \dfrac{y_1 + 2}{2}\right)
\Rightarrow x_1 = 2x - 3,\ y_1 = 2y - 2.
\]
Since $P$ lies on the circle:
\[
(2x - 3)^2 + (2y - 2)^2 = 1
\]
\[
\Rightarrow 4x^2 + 4y^2 - 12x - 8y + 13 = 0
\]
Divide by 4:
\[
x^2 + y^2 - 3x - 2y + \dfrac{13}{4} = 0
\]
\[
\Rightarrow (x - \tfrac{3}{2})^2 + (y - 1)^2 = \dfrac{11}{4}
\]
Hence radius $= \dfrac{\sqrt{11}}{2}$.
Qus : 3
Jamia Millia Islamia PYQ
1
If slope of common tangent to the curves $4x^2 + 9y^2 = 36$ and $4x^2 + 4y^2 = 31$ is $m$,
then $m^2$ is equal to:
1
3
2
6 3
9
4
5 Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ
Solution For ellipse $4x^2 + 9y^2 = 36 \Rightarrow \dfrac{x^2}{9} + \dfrac{y^2}{4} = 1$
and for circle $4x^2 + 4y^2 = 31 \Rightarrow x^2 + y^2 = \dfrac{31}{4}$
Let tangent be $y = mx + c$.
For ellipse, condition is $c^2 = a^2m^2 + b^2 = 9m^2 + 4$.
For circle, condition is $c^2 = r^2(1 + m^2) = \dfrac{31}{4}(1 + m^2)$.
Equating both:
$9m^2 + 4 = \dfrac{31}{4}(1 + m^2)$
$\Rightarrow 36m^2 + 16 = 31 + 31m^2$
$\Rightarrow 5m^2 = 15 \Rightarrow m^2 = 3.$
Qus : 5
Jamia Millia Islamia PYQ
2
From a point on the circle $x^2 + y^2 = a^2$, tangents are drawn to the circle $x^2 + y^2 = b^2$.
The chord of contact of these tangents is tangent to $x^2 + y^2 = c^2$.
Then $a, b, c$ are in:
1
A.P.
2
G,P. 3
H.P. 4
None Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution Equation of chord of contact from $(a\cos\theta, a\sin\theta)$ to circle $x^2 + y^2 = b^2$ is
$a(\cos\theta \,x + \sin\theta \,y) = b^2.$
For this line to be tangent to $x^2 + y^2 = c^2$,
the perpendicular distance from origin = radius of that circle.
$\Rightarrow \dfrac{|b^2|}{\sqrt{a^2}} = c$
$\Rightarrow b^2 = a c$
Hence, $a, b, c$ are in G.P.
[{"qus_id":"13846","year":"2021"},{"qus_id":"13880","year":"2021"},{"qus_id":"13881","year":"2021"},{"qus_id":"13970","year":"2020"},{"qus_id":"14040","year":"2019"}]