Let the first term be $a$ and common difference $d$.
$ a + 19d = 30 $
$ a + 29d = 20 $
Subtract → $10d = -10 \Rightarrow d = -1$
Then $a = 49$
10th term = $a + 9d = 49 - 9 = 40$
Let $a=\log_2(5·2^x+1)$, $b=\log_4(2^{1-x}+1)$, $c=1$
For A.P.: $2b=a+c$
Simplify using $\log_4 y = \frac{1}{2}\log_2 y$
After algebra → $x = 1 - \log_2 5$
If $\omega$ is a cube root of unity, then
$\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
1 & \omega^2 & 1 \\
\omega & 1 & \omega^2
\end{array}\right|$
is equal to
Let $\vec{A} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{C} = -\hat{i} - \hat{j}$ be two vectors.
Which of the following is the vector $\vec{B}$ such that
$\vec{A} \times \vec{B} = \hat{k}$ and $\vec{A} \cdot \vec{B} = 1$ ?
$\arg z = \tan^{-1}\!\left(\frac{1}{\sqrt3}\right)=\frac{\pi}{6}$ (I quadrant),
$\arg\bar z = -\frac{\pi}{6}$. Sum of absolute values $=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$.
Let $z=x+iy$. Then $|z|-x-iy=1+2i \Rightarrow |z|-x=1,\; -y=2\Rightarrow y=-2$.
$|z|=1+x$, and $(1+x)^{2}=x^{2}+4 \Rightarrow x=\tfrac{3}{2}$.
Thus $z=\tfrac{3}{2}-2i$.
$x^{2}+y^{2}=a^{2}\sin^{2}\theta\cos^{2}\theta$.
So $(x^{2}+y^{2})^{3}=a^{6}\sin^{6}\theta\cos^{6}\theta
= a^{2}(a^{4}\sin^{6}\theta\cos^{6}\theta)=a^{2}x^{2}y^{2}$.
Use $\sin3x=4\sin x\sin(60^\circ-x)\sin(60^\circ+x)$ with $x=6^\circ$
and $\sin(90^\circ-\alpha)=\cos\alpha$, then simplify the product.
Value $= \tfrac{1}{16}$.
Let $a=\sqrt{x+y},\,b=\sqrt{y-x}$. $(a+b)^2=2 \Rightarrow y+\sqrt{y^{2}-x^{2}}=1$.
Differentiate: $y'+\dfrac{yy'-x}{\sqrt{y^{2}-x^{2}}}=0$.
But $\sqrt{y^{2}-x^{2}}=1-y$ from above ⇒ $y'=x$ ⇒ $y''=1$.
Add digits of each number and then multiply:
For $54 + 43 \Rightarrow (5+4)+(4+3)=9+7=16$, 1+6=7−5=2 pattern → next → $72+62\Rightarrow 9+8=17$, 1+7=8+1=9? ≈ pattern → $\boxed{13}$
Left letters $A,B,D,G,K$ with steps $+1,+2,+3,+4$ → next $+5$: $K$ stays as left? (already K from prev step), actually pattern gives next pair $K\to P$ and right $B,D,G,K\to P$; number $1,2,3,4\to5$.
So $K5P$.
$\boxed{K_5P}$
First letters $A,B,D,G$ with jumps $+1,+2,+3$ → next $+4$: $K$.
Second letters $B,D,F,H$ ($+2$ each) → $J$.
Third letters $Z,Y,X,W$ ($-1$ each) → $V$.
$\boxed{\text{KJV}}$