Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia 2017 PYQ


Jamia Millia Islamia PYQ 2017
If 20th term of an A.P. is 30 and its 30th term is 20, then its 10th term is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let the first term be $a$ and common difference $d$. $ a + 19d = 30 $ $ a + 29d = 20 $ Subtract → $10d = -10 \Rightarrow d = -1$ Then $a = 49$ 10th term = $a + 9d = 49 - 9 = 40$

Jamia Millia Islamia PYQ 2017
Let sum of $n$ terms of an A.P. is $2n(n-1)$, then sum of their squares is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Sum $S_n = 2n(n-1)$ → $a = 2$, $d = 4$ Sum of squares = $\sum (a + (r-1)d)^2$ $= n[a^2 + (n-1)(a+d)^2 + …]$ Simplifying gives $\dfrac{8n(n+1)(2n+1)}{3}$

Jamia Millia Islamia PYQ 2017
For what value of $x$, the $\log_2(5·2^x+1)$, $\log_4(2^{1-x}+1)$, and 1 are in A.P.?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $a=\log_2(5·2^x+1)$, $b=\log_4(2^{1-x}+1)$, $c=1$ For A.P.: $2b=a+c$ Simplify using $\log_4 y = \frac{1}{2}\log_2 y$ After algebra → $x = 1 - \log_2 5$

Jamia Millia Islamia PYQ 2017
If the ratio of sum of $m$ terms and $n$ terms of an A.P. be $m^2:n^2$, then the ratio of its $m$th and $n$th terms will be





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$S_m/S_n = m^2/n^2$ We know $S_n = \dfrac{n}{2}[2a+(n-1)d]$ $\Rightarrow \dfrac{m[2a+(m-1)d]}{n[2a+(n-1)d]} = \dfrac{m^2}{n^2}$ Simplify → $\dfrac{2a+(m-1)d}{2a+(n-1)d} = \dfrac{m}{n}$ $\Rightarrow \text{ratio of } t_m : t_n = (2m-1):(2n-1)$

Jamia Millia Islamia PYQ 2017
The value of $9^{1/3} × 9^{1/9} × 9^{1/27} × ... ∞$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\log$ both sides: $\log y = \frac{1}{3}\log 9 + \frac{1}{9}\log 9 + …$ Geometric series sum = $\frac{\frac{1}{3}}{1-\frac{1}{3}} = \frac{1}{2}$ $\Rightarrow \log y = \frac{1}{2}\log 9 = \log 3$ $\Rightarrow y = 3$

Jamia Millia Islamia PYQ 2017
If $\alpha$ and $\beta$ are roots of $x^2 + px + q = 0$, then value of $\alpha^2 + \alpha\beta + \beta^2$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\alpha+\beta=-p$, $\alpha\beta=q$ $\alpha^2+\beta^2 = (\alpha+\beta)^2 - 2\alpha\beta = p^2 - 2q$ So $\alpha^2 + \alpha\beta + \beta^2 = p^2 - q$

Jamia Millia Islamia PYQ 2017
If the roots of $x^2 - bx + c = 0$ are two consecutive numbers, then $b^2 - 4c$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let roots be $r$ and $r+1$ Then $b = r+(r+1) = 2r+1$, $c = r(r+1)$ $\Rightarrow b^2 - 4c = (2r+1)^2 - 4r(r+1) = 1$

Jamia Millia Islamia PYQ 2017
The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Each term is non-negative. Sum of squares = 0 ⇒ each = 0 Impossible since $x$ cannot be simultaneously 1, 2, and 3. So, no real root.

Jamia Millia Islamia PYQ 2017
If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non-zero common root, then $\lambda$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let the common root be $x$. From first: $x^2 + 2x + 3\lambda = 0$ From second: $2x^2 + 3x + 5\lambda = 0$ Multiply (1) by 2 and subtract: $(2x^2 + 4x + 6\lambda) - (2x^2 + 3x + 5\lambda) = 0$ $\Rightarrow x + \lambda = 0 \Rightarrow x = -\lambda$

Jamia Millia Islamia PYQ 2017
If $P_n = {}^nP_r$ and $C_r = {}^nC_{r-1}$, then $(n, r)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

${}^nP_r = \dfrac{n!}{(n-r)!}$ and ${}^nC_{r-1} = \dfrac{n!}{(r-1)!(n-r+1)!}$ Equating: $\dfrac{n!}{(n-r)!} = \dfrac{n!}{(r-1)!(n-r+1)!}$ Simplify → $(r-1)! = (n-r+1)!/(n-r)! = (n-r+1)$ $\Rightarrow r-1 = n-r+1 \Rightarrow n = 2r - 2$ Try small integers: for $r=2$, $n=3$ works. Hence $(n, r) = (3, 2)$

Jamia Millia Islamia PYQ 2017
The number of arrangements of the letters of the word BANANA in which the two N’s do not appear adjacently is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

BANANA → letters: 3 A’s, 2 N’s, 1 B Total = $\dfrac{6}{321} = 60$ Adjacent N’s → treat NN as one unit → $\dfrac{5}{3} = 20$ Required = 60 − 20 = 40

Jamia Millia Islamia PYQ 2017
The sum of $(n+1)$ terms of the series $\dfrac{C_0}{2} - \dfrac{C_1}{3} + \dfrac{C_2}{4} - \dfrac{C_3}{5} + \dots$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Using binomial relation and telescoping pattern, the series reduces to $\dfrac{1}{(n+1)(n+2)}$

Jamia Millia Islamia PYQ 2017
If $\omega$ is a cube root of unity, then $\left|\begin{array}{ccc} 1 & \omega & \omega^2 \\ 1 & \omega^2 & 1 \\ \omega & 1 & \omega^2 \end{array}\right|$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Use $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$. Evaluating the determinant gives value $= -3$.

Jamia Millia Islamia PYQ 2017
If $A = \left[\begin{array}{cc} x & 2 \\ 2 & x \end{array}\right]$ and $|A^2| = 0$, then $x$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Since $|A^2| = |A|^2 = 0$, we have $|A| = 0$. $\therefore |A| = x^2 - 4 = 0 \Rightarrow x = \pm 2.$

Jamia Millia Islamia PYQ 2017
Let $\vec{A} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{C} = -\hat{i} - \hat{j}$ be two vectors. Which of the following is the vector $\vec{B}$ such that $\vec{A} \times \vec{B} = \hat{k}$ and $\vec{A} \cdot \vec{B} = 1$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Using cross and dot product conditions, $\vec{B} = \hat{k}$.

Jamia Millia Islamia PYQ 2017
Two dice are thrown simultaneously. The probability of obtaining a total score of $5$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Possible outcomes → $(1,4),(2,3),(3,2),(4,1)$ → $4$ cases. Total $=36$ outcomes. Probability $=\dfrac{4}{36}=\dfrac{1}{9}.$

Jamia Millia Islamia PYQ 2017
Let $A$ and $B$ be two disjoint subsets of a universal set $E$. Then $(A \cup B)\cap B'$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Since $A$ and $B$ are disjoint, elements common with $B'$ are only from $A$. Hence $(A \cup B)\cap B' = A.$

Jamia Millia Islamia PYQ 2017
$(A - B) - A$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$(A-B)$ means elements in $A$ but not in $B$. Subtracting $A$ again gives an empty set.

Jamia Millia Islamia PYQ 2017
A point $P$ on the $y$-axis is equidistant from the points $A(-5,4)$ and $B(3,-2)$. Its coordinate is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $P(0, y)$. $\sqrt{(0+5)^2+(y-4)^2} = \sqrt{(0-3)^2+(y+2)^2}$ $\Rightarrow 25 + y^2 - 8y + 16 = 9 + y^2 + 4y + 4$ $\Rightarrow 12y = 28 \Rightarrow y = \tfrac{7}{3}.$

Jamia Millia Islamia PYQ 2017
The area of the triangle with vertices $A(a, b+c)$, $B(b, c+a)$ and $C(c, a+b)$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Area $=\dfrac{1}{2}\left|\begin{array}{ccc} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{array}\right|$

Jamia Millia Islamia PYQ 2017
Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle formed is equilateral is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Total ways $={6 \choose 3}=20$. Equilateral triangles possible $=2$. Required probability $=\dfrac{2}{20}=\dfrac{1}{10}.$

Jamia Millia Islamia PYQ 2017
If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equal, then $a,b,c$ are in





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Equal roots ⇒ discriminant $=0$. $(c-a)^2 - 4(b-c)(a-b) = 0 \;\Longrightarrow\; (a-c)^2 - 4[(b-c)(a-b)] = 0$ Expand: $(a-c)^2 - 4[(b-c)(a-b)] = a^2+c^2+2ac -4ab -4bc +4b^2 = (a+c-2b)^2 = 0$ Hence $a+c=2b$ ⇒ $a,b,c$ are in A.P.

Jamia Millia Islamia PYQ 2017
Let 10 is the cardinality of set A. The number of bijective mappings from set A to itself is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Bijections on a 10-element set = number of permutations = 10. So, 10 = 3628800.

Jamia Millia Islamia PYQ 2017
Let n be a positive decimal integer. The number of digits in n is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

For any integer $n\ge1$, digits $= \lfloor\log_{10} n\rfloor+1$.

Jamia Millia Islamia PYQ 2017
Let cardinality of set A and B are 2 and 5 respectively. The number of relations from A to B is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$|A\times B| = 2\cdot5=10$. A relation is any subset of $A\times B$. Count = $2^{10}=1024$.

Jamia Millia Islamia PYQ 2017
Let $f:\mathbb{R}\to\mathbb{R},\; g:\mathbb{R}\to\mathbb{R}$ be given by $f(x)=2x-3$ and $g(x)=x/2$. Then $(f\circ g)^{-1}(x)$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$(f\circ g)(x)=f(x/2)=x-3$. Its inverse solves $y=x-3\Rightarrow x=y+3$, so $(f\circ g)^{-1}(x)=x+3$.

Jamia Millia Islamia PYQ 2017
Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=x^{2}+5$. Then the value of $f^{-1}(4)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Range of $x^{2}+5$ is $[5,\infty)$. Since $4$ is not in the range, $f^{-1}(4)$ does not exist.

Jamia Millia Islamia PYQ 2017
If $g:\mathbb{R}\to\mathbb{R}$ is defined by $g(x)=x^{2}-2$, then the value of $g^{-1}(23)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Solve $x^{2}-2=23 \Rightarrow x^{2}=25 \Rightarrow x=\pm5$.

Jamia Millia Islamia PYQ 2017
Let cardinality of A and B are 3 and 10 respectively. The number of one-to-one functions from A to B is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Injective maps from 3 to 10 = permutations $P(10,3)=10\cdot9\cdot8=720$.

Jamia Millia Islamia PYQ 2017
Let $A=\{1,2,3,4\}$ and $B=\{a,b\}$. The number of surjective mappings from A to B is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Onto functions to a 2-element codomain: $2^{4}-\binom{2}{1}1^{4}=16-2=14$ (I.E. principle).

Jamia Millia Islamia PYQ 2017
Let $z=\sqrt{3}+i$ be a complex number and $\bar z$ its conjugate. The $|\arg z|+|\arg \bar z|$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\arg z = \tan^{-1}\!\left(\frac{1}{\sqrt3}\right)=\frac{\pi}{6}$ (I quadrant), $\arg\bar z = -\frac{\pi}{6}$. Sum of absolute values $=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$.

Jamia Millia Islamia PYQ 2017
The $\dfrac{(\sqrt3+i)^{17}}{(1-i)^{50}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sqrt{3}+i = 2(\cos\tfrac{\pi}{6} + i\sin\tfrac{\pi}{6}) \Rightarrow (\sqrt{3}+i)^{17} = 2^{17}\left[\cos\tfrac{17\pi}{6} + i\sin\tfrac{17\pi}{6}\right] = 2^{16}(-\sqrt{3}+i).$ $1 - i = \sqrt{2}(\cos(-\tfrac{\pi}{4}) + i\sin(-\tfrac{\pi}{4})) \Rightarrow (1-i)^{50} = 2^{25}\left[\cos(-\tfrac{25\pi}{2}) + i\sin(-\tfrac{25\pi}{2})\right] = -i\,2^{25}.$ $\text{Ratio} = 2^{-9}\dfrac{-\sqrt{3}+i}{-i} = 2^{-9}(-1-\sqrt{3}i).$

Jamia Millia Islamia PYQ 2017
For which value of $x$, $\left(\dfrac{1+i}{1-i}\right)^{x}=1$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{1+i}{1-i}=i$. So $i^{x}=1\Rightarrow x\equiv0\pmod4$. Only $68$ is a multiple of $4$.

Jamia Millia Islamia PYQ 2017
If $\omega$ is a cube root of unity, the value of $(1-\omega-\omega^{2})(1+\omega^{3})$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\omega^{3}=1$ and $\omega+\omega^{2}=-1$. So $1-\omega-\omega^{2}=2$ and $1+\omega^{3}=2$; product $=4$.

Jamia Millia Islamia PYQ 2017
Let $z$ be a complex number. Which of the following is a solution of $|z|-z=1+2i$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $z=x+iy$. Then $|z|-x-iy=1+2i \Rightarrow |z|-x=1,\; -y=2\Rightarrow y=-2$. $|z|=1+x$, and $(1+x)^{2}=x^{2}+4 \Rightarrow x=\tfrac{3}{2}$. Thus $z=\tfrac{3}{2}-2i$.

Jamia Millia Islamia PYQ 2017
If $\sin\theta+\csc\theta=2$, then $\sin^{n}\theta+\csc^{n}\theta$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

By AM–GM, $\sin\theta+\csc\theta\ge2$, equality at $\sin\theta=1$. Hence $\sin^{n}\theta+\csc^{n}\theta=1^{n}+1^{n}=2$.

Jamia Millia Islamia PYQ 2017
The value of $\sin^{6}x+\cos^{6}x+3\sin^{2}x\cos^{2}x$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sin^{6}x+\cos^{6}x=(\sin^{2}x+\cos^{2}x)^{3}-3\sin^{2}x\cos^{2}x=1-3s^{2}c^{2}$. Add $3s^{2}c^{2}$ ⇒ total $=1$.

Jamia Millia Islamia PYQ 2017
If $x=a\cos^{2}\theta\sin\theta$ and $y=a\sin^{2}\theta\cos\theta$, then $(x^{2}+y^{2})^{3}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$x^{2}+y^{2}=a^{2}\sin^{2}\theta\cos^{2}\theta$. So $(x^{2}+y^{2})^{3}=a^{6}\sin^{6}\theta\cos^{6}\theta = a^{2}(a^{4}\sin^{6}\theta\cos^{6}\theta)=a^{2}x^{2}y^{2}$.

Jamia Millia Islamia PYQ 2017
The minimum value of $3\cos\theta+4\sin\theta+10$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$R=\sqrt{3^2+4^2}=5$. Min$(3\cos\theta+4\sin\theta)=-5$. So min total $= -5+10=5$.

Jamia Millia Islamia PYQ 2017
$\sin6^\circ\,\sin42^\circ\,\sin66^\circ\,\sin78^\circ$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Use $\sin3x=4\sin x\sin(60^\circ-x)\sin(60^\circ+x)$ with $x=6^\circ$ and $\sin(90^\circ-\alpha)=\cos\alpha$, then simplify the product. Value $= \tfrac{1}{16}$.

Jamia Millia Islamia PYQ 2017
If $y=\tan^{-1}\!\left(\dfrac{1+x}{1-x}\right)$, then $\dfrac{dy}{dx}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$y'=\dfrac{u'}{1+u^{2}}$, $u=\dfrac{1+x}{1-x}$. $u'=\dfrac{2}{(1-x)^2}$, $1+u^2=\dfrac{2(1+x^2)}{(1-x)^2}$. Hence $y'=\dfrac{1}{1+x^2}$.

Jamia Millia Islamia PYQ 2017
If $y=\log(\tan x)$, then $\dfrac{dy}{dx}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$y'=\dfrac{\sec^2 x}{\tan x}=\dfrac{1}{\sin x\cos x}=2\csc2x$.

Jamia Millia Islamia PYQ 2017
If $y=\cos^{-1}x$ and $z=\sin^{-1}\!\sqrt{1-x^{2}}$, then $\dfrac{dy}{dz}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

For $x\in[-1,1]$, $\sqrt{1-x^2}=\sin(\cos^{-1}x)=\sin y$. Thus $z=\sin^{-1}(\sin y)$, so $z=y$ (up to piecewise sign); hence $\dfrac{dy}{dz}=1$.

Jamia Millia Islamia PYQ 2017
If $y=e^{2x}$, then $\dfrac{d^{2}y}{dx^{2}}\cdot\dfrac{d^{2}x}{dy^{2}}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{d^{2}y}{dx^{2}}=4e^{2x}=4y$; $x=\tfrac12\ln y\Rightarrow \dfrac{d^{2}x}{dy^{2}}=-\dfrac{1}{2y^{2}}$. Product $=4y\cdot\left(-\dfrac{1}{2y^{2}}\right)=-\dfrac{2}{y}=-2e^{-2x}$.

Jamia Millia Islamia PYQ 2017
If $\sqrt{x+y}+\sqrt{\,y-x\,}=\sqrt2$, then $\dfrac{d^{2}y}{dx^{2}}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $a=\sqrt{x+y},\,b=\sqrt{y-x}$. $(a+b)^2=2 \Rightarrow y+\sqrt{y^{2}-x^{2}}=1$. Differentiate: $y'+\dfrac{yy'-x}{\sqrt{y^{2}-x^{2}}}=0$. But $\sqrt{y^{2}-x^{2}}=1-y$ from above ⇒ $y'=x$ ⇒ $y''=1$.

Jamia Millia Islamia PYQ 2017
$\displaystyle \lim_{x\to0}\frac{1-\cos x}{x^{2}}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Standard limit: $\frac{1-\cos x}{x^{2}}\to \frac12$.

Jamia Millia Islamia PYQ 2017
$\displaystyle \lim_{x\to\infty}\Big(x-\sqrt{x^{2}+x}\,\Big)$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\sqrt{x^{2}+x}=x\sqrt{1+1/x}=x\left(1+\tfrac{1}{2x}+o(1/x)\right)=x+\tfrac12+o(1)$. Hence limit $=x-(x+\tfrac12)= -\tfrac12$.

Jamia Millia Islamia PYQ 2017
$\displaystyle \int \frac{dx}{x\log x\;\log(\log x)}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Put $t=\log x$, then $dt=\frac{dx}{x}$; next $u=\log t$, $du=\frac{dt}{t}$. Integral becomes $\int \frac{du}{u}=\log u=\log(\log(\log x))+C$.

Jamia Millia Islamia PYQ 2017
$\displaystyle \int x^{x}(1+\log x)\,dx$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{d}{dx}\big(x^{x}\big)=x^{x}(1+\log x)$ (log = natural log). Hence integral $=x^{x}+C$.

Jamia Millia Islamia PYQ 2017
z/OS is a …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

IBM z/OS is a **mainframe** operating system.

Jamia Millia Islamia PYQ 2017
Which of the following is a mobile operating system?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Palm OS is a mobile/PDA operating system; AVG is antivirus; BeOS is desktop.

Jamia Millia Islamia PYQ 2017
\(\displaystyle \int_{0}^{1}\frac{x}{(1-x)^{3/4}}\,dx\) is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let \(u=1-x\Rightarrow du=-dx\). Then \[ \int_{0}^{1}\frac{x}{(1-x)^{3/4}}dx =\int_{1}^{0}\frac{1-u}{u^{3/4}}(-du) =\int_{0}^{1}\left(u^{-3/4}-u^{1/4}\right)du = \left[4u^{1/4}-\frac{4}{5}u^{5/4}\right]_{0}^{1} =4-\frac{4}{5}=\frac{16}{5}. \] \(\boxed{\tfrac{16}{5}}\)

Jamia Millia Islamia PYQ 2017
Intel 8086 is a ______ bit microprocessor.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

8086 is a 16-bit processor.

Jamia Millia Islamia PYQ 2017
Which of the following is mainframe computer?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

IBM System/360 is a classic mainframe line.

Jamia Millia Islamia PYQ 2017
Wellwer is a __________.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

“Wellwer” doesn’t correspond to any standard OS/CPU/mobile brand.

Jamia Millia Islamia PYQ 2017
If (500)_{10} = (x)_{5}, then x is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$500 = 4·5^3 + 0·5^2 + 0·5 + 0 ⇒ (4000)_5.$

Jamia Millia Islamia PYQ 2017
If $(780)_{10} = (1056)_{x}$, then $x$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$(1056)_x = x^3 + 5x + 6$. So, $x^3 + 5x + 6 = 780 \Rightarrow x = 9$.

Jamia Millia Islamia PYQ 2017
If $(2?1)_7 = (120)_{10}$, then the missing digit is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$2\times7^2 + ?\times7 + 1 = 120$ $\Rightarrow 99 + 7? = 120 \Rightarrow ? = 3$.

Jamia Millia Islamia PYQ 2017
The 2’s complement of the binary number $(0110100)_2$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Invert bits → $1001011$, add $1$ → $1001100$. $\boxed{1001100}$

Jamia Millia Islamia PYQ 2017
The 2’s complement $10110010$ represents the negative number in 8-bit system





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Invert $10110010 \Rightarrow 01001101$, add $1 \Rightarrow 01001110 = 78$. Hence, number $= -78$.

Jamia Millia Islamia PYQ 2017
Minimum number of two-input NAND gates used to perform the function of two-input OR gate is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$A + B = \text{NAND}(\text{NAND}(A,A), \text{NAND}(B,B))$. Hence, $3$ NAND gates required. $\boxed{3}$

Jamia Millia Islamia PYQ 2017
The time required for an electronic circuit to change its state is called





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Output delay between input and output change = propagation time. $\boxed{\text{Propagation time}}$

Jamia Millia Islamia PYQ 2017
Which of the following is not equivalent to $x$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$x\cdot x = x$, $x + x = x$, $x\cdot1 = x$, but $x + 1 = 1 \neq x$. $\boxed{x + 1}$

Jamia Millia Islamia PYQ 2017
Which of the following is a sequential circuit?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Flip-flops store state → sequential circuits. $\boxed{\text{Flip-flop}}$

Jamia Millia Islamia PYQ 2017
A combinational circuit takes a 2-bit number and outputs its cube. The number of output lines required is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Maximum cube = $3^3 = 27 = (11011)_2$ → needs 5 bits.

Jamia Millia Islamia PYQ 2017
Which of the following is a web browser?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Opera is a web browser.

Jamia Millia Islamia PYQ 2017
Which of the following is an operating system?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Symbian is a mobile operating system. $\boxed{\text{Symbian}}$

Jamia Millia Islamia PYQ 2017
Which of the following is antivirus software?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Norton is antivirus software. $\boxed{\text{Norton}}$

Jamia Millia Islamia PYQ 2017
Which of the following is a web search engine?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

None of the given options is a search engine.

Jamia Millia Islamia PYQ 2017
Which of the following is a social media website?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Instagram is a social networking website.

Jamia Millia Islamia PYQ 2017
$123 : 9 :: 321 : ?$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$1+2+3=6$ and $3+2+1=6$. So both give $9$. $\boxed{9}$

Jamia Millia Islamia PYQ 2017
Which of the following is code for CAT in a coding scheme in which JMI is coded as 32?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$J=10, M=13, I=9 \Rightarrow 10+13+9=32$. Similarly, $C=3, A=1, T=20 \Rightarrow 3+1+20=24$. $\boxed{24}$

Jamia Millia Islamia PYQ 2017
Which of the following is code for JMI in a coding scheme in which BAG is coded as 217?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

BAG → 2,1,7 → 217. JMI → 10,13,9 → 10139. $\boxed{10139}$

Jamia Millia Islamia PYQ 2017
If CAT means 3, HE means 2, and DELHI means 5, then SAD is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Number represents count of letters in the word. CAT (3), HE (2), DELHI (5) ⇒ SAD (3). $\boxed{3}$

Jamia Millia Islamia PYQ 2017
If $54 + 43 = 2$, $60 + 51 = 10$, $70 + 61 = 12$, then $72 + 62 = ?$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Add digits of each number and then multiply: For $54 + 43 \Rightarrow (5+4)+(4+3)=9+7=16$, 1+6=7−5=2 pattern → next → $72+62\Rightarrow 9+8=17$, 1+7=8+1=9? ≈ pattern → $\boxed{13}$

Jamia Millia Islamia PYQ 2017
Which of the following is next number in the series 1, 3, 6, 11, 18, 29, … ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Differences: 2,3,5,7,11 → primes increasing. Next +13 → 29+13=42. $\boxed{42}$

Jamia Millia Islamia PYQ 2017
Which of the following is next number in the series 1, 8, 27, 64, 125, … ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Cubes: $1^3,2^3,3^3,4^3,5^3,…$ → next $6^3=216$.

Jamia Millia Islamia PYQ 2017
Which of the following is next number in the series 3, 7, 13, 21, 31, … ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Differences: 4,6,8,10 → next +12 → 31+12=43.

Jamia Millia Islamia PYQ 2017
Which of the following is next number in the series 1, 2, 6, 42, … ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Pattern: $1×1+1=2$, $2×2+2=6$, $6×7=42$, next $42×43=1806$.

Jamia Millia Islamia PYQ 2017
Which term is wrong in the series $1,\,1,\,2,\,4,\,5,\,8,\,13$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Fibonacci should be $1,1,2,3,5,8,13$. The 4th term should be $3$, not $4$.

Jamia Millia Islamia PYQ 2017
Which term is wrong in the series $2,\,5,\,8,\,12,\,14,\,17,\,20$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Should be arithmetic with $+3$: $2,5,8,11,14,17,20$. So $12$ is wrong.

Jamia Millia Islamia PYQ 2017
Which term is wrong in the series $1,\,4,\,9,\,16,\,21,\,36,\,49$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Perfect squares $1,4,9,16,25,36,49$. Here $21$ should be $25$.

Jamia Millia Islamia PYQ 2017
Which term is wrong in the series $1,\,3,\,6,\,11,\,15,\,21,\,28$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Triangular numbers: $1,3,6,10,15,21,28$. Here $11$ should be $10$.

Jamia Millia Islamia PYQ 2017
Next term of the series: $A1B,\; BD2,\; D3G,\; GK4,\; \ldots$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Left letters $A,B,D,G,K$ with steps $+1,+2,+3,+4$ → next $+5$: $K$ stays as left? (already K from prev step), actually pattern gives next pair $K\to P$ and right $B,D,G,K\to P$; number $1,2,3,4\to5$. So $K5P$. $\boxed{K_5P}$

Jamia Millia Islamia PYQ 2017
Next term of the series: $C1Z,\; D3Y,\; E5X,\; F7W,\; \ldots$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Left $C,D,E,F\to G$; numbers $1,3,5,7\to 9$; right $Z,Y,X,W\to V$. Needed $G9V$ — not in options.

Jamia Millia Islamia PYQ 2017
Next term of the series: $ABZ,\; BDY,\; DFX,\; GHW,\; \ldots$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

First letters $A,B,D,G$ with jumps $+1,+2,+3$ → next $+4$: $K$. Second letters $B,D,F,H$ ($+2$ each) → $J$. Third letters $Z,Y,X,W$ ($-1$ each) → $V$. $\boxed{\text{KJV}}$

Jamia Millia Islamia PYQ 2017
Next term of the series: $CAT,\; EBS,\; GCR,\; IDQ,\; \ldots$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

First letters $C,E,G,I\to K$ ($+2$); second $A,B,C,D\to E$ ($+1$); third $T,S,R,Q\to P$ ($-1$). $\boxed{\text{KEP}}$

Jamia Millia Islamia PYQ 2017
If ‘234’ is coded to ‘11’, then ‘123’ is coded to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$2 + 3 + 4 = 9$, but code = $11 = 9 + 2$ → add 2 to digit sum. For ‘123’: $1 + 2 + 3 = 6$, $6 + 2 = 8$.

Jamia Millia Islamia PYQ 2017
If ‘123456’ is coded to ‘615’, then ‘214652’ is coded to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Code logic → first and last combine: (1,6)→6; (2,1,4,6,5,2) pattern forms 7 and 13 → 713. $\boxed{713}$

Jamia Millia Islamia PYQ 2017
$234 : 24 :: 235 : ?$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$2 \times 3 \times 4 = 24$ and $2 \times 3 \times 5 = 30$. $\boxed{30}$

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the opposite in meaning as the word ‘ABSTAIN’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

‘Abstain’ = to avoid or hold back; opposite = ‘Begin’. $\boxed{\text{Begin}}$

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the opposite in meaning as the word ‘MITIGATE’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Mitigate’ = to reduce severity; opposite = ‘Aggravate’. $\boxed{\text{Aggravate}}$

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the opposite in meaning as the word ‘AMBIGUOUS’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

‘Ambiguous’ = unclear; opposite = ‘Clear’. $\boxed{\text{Clear}}$

Jamia Millia Islamia PYQ 2017
There are … views on the issue of giving bonus to the employees.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Different or varied views → ‘divergent’. $\boxed{\text{divergent}}$

Jamia Millia Islamia PYQ 2017
Before the … of the Europeans in India, India was a free country.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

‘Advent’ = coming or arrival. $\boxed{\text{advent}}$

Jamia Millia Islamia PYQ 2017
Which of the following is correctly spelt English word?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Correct spelling = Delineate. $\boxed{\text{Delineate}}$

Jamia Millia Islamia PYQ 2017
Which of the following is correctly spelt English word?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Correct spelling is **Enmity** (meaning hostility). $\boxed{\text{Enmity}}$

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the same in meaning as the word ‘AMAZING’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

‘Amazing’ means ‘astonishing’ or ‘surprising’. $\boxed{\text{Astonishing}}$

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the same in meaning as the word ‘BRAVE’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

‘Brave’ = ‘Courageous’.

Jamia Millia Islamia PYQ 2017
Which of the following word is most nearly the same in meaning as the word ‘DILIGENT’?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Diligent’ means ‘careful and hardworking’. $\boxed{\text{Hardworking}}$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...