Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Function PYQ


CUET PG MCA PYQ
Letf $f:[2,\infty)\rightarrow R$ be the function defined by $f(x)=x^2-4x+5$, then the range of $f$





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
Match List I with List II 
 List - I (Domain) List - II (Range)
A. $$y=\frac{1}{2-\sin 3x}$$I. $$\Bigg{(}1,\frac{7}{3}\Bigg{]}$$
B. $$y=\frac{{x}^2+x+2}{{x}^2+x+1},\, x\in R$$II. $$\Bigg{[}\frac{\pi}{2},\pi\Bigg{)}\cup(\pi,\frac{3\pi}{2}\Bigg{]}$$
C. $$y=\sin x-\cos x$$III. $$\Bigg{[}\frac{1}{3},1\Bigg{]}$$
D. $$y={\cot }^{-1}(-x)-{\tan }^{-1}x+{sec}^{-1}x$$IV. $$[-\sqrt[]{2},\sqrt[]{2}]$$
Choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution

Step 1: For (A)

\( y = \dfrac{1}{2 - \sin 3x} \)
Since \( \sin 3x \in [-1,1] \), we get \( 2 - \sin 3x \in [1,3] \).
Hence \( y \in \left[\tfrac{1}{3}, 1\right] \). → Matches with (III).

Step 2: For (B)

\( y = \dfrac{x^2 + x + 2}{x^2 + x + 1} = 1 + \dfrac{1}{x^2 + x + 1} \)
Since denominator is always positive, \( y > 1 \).
Minimum denominator = \(\tfrac{3}{4}\) at \(x = -\tfrac{1}{2}\).
So maximum \( y = 1 + \tfrac{1}{3/4} = \tfrac{7}{3} \).
Thus, Range = \((1, \tfrac{7}{3}] \). → Matches with (I).

Step 3: For (C)

\( y = \sin x - \cos x = \sqrt{2}\sin\!\left(x - \tfrac{\pi}{4}\right) \)
Hence, Range = \([-\sqrt{2}, \sqrt{2}] \). → Matches with (IV).

Step 4: For (D)

\( y = \cot^{-1}(-x) - \tan^{-1}(x) + \sec^{-1}(x) \)
Simplifying with inverse trig identities gives Range:
\(\left[\tfrac{\pi}{2}, \pi\right) \cup \left(\pi, \tfrac{3\pi}{2}\right]\). → Matches with (II).


CUET PG MCA PYQ
The function $f(x)=[x]^n$ , integer n>=2 (where [y] is the greatest integer less than or equal to y), is discontinuous at all point of





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution

The function is

\( f(x) = [x]^n , \quad n \geq 2 \)

where \([x]\) is the greatest integer function (GIF).

The GIF \([x]\) is discontinuous at all integers. Raising it to the integer power \(n \geq 2\) does not remove this discontinuity, because the jump still exists at each integer value of \(x\).

For non-integer \(x\), the function is constant over intervals \((m, m+1)\) where \(m \in \mathbb{Z}\), so it is continuous within each open interval between integers.

Final Answer: The function is discontinuous at all integers.


CUET PG MCA PYQ
Match List – I with List – II
 List - I List - II 
$f(0)$
 (A)  $f(x)=\frac{log(1+4x)}{x}$(I) $\frac{1}{4}$
(B) $f(x)=\frac{log(4+x)-log4}{x}$(II) 1 
(C) $f(x)=\frac{x}{sinx}$(III) 4 
(D) $\frac{1-cos^3x}{x sin2x}$(IV) $\frac{3}{4}$
Choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...