| List - I | List - II |
| (A) Eccentricity of the conic $x^2-4x+4y+4y^2=12$ | (I) 10/3 |
| (B) Latus rectum of conic $5x^2+9y^2=45$ | (II) 1 |
| (C) The straight line x+y=a touches the curve $y=x-x^2$ then value of a | (III) 2 |
| (D) Eccentricity of conic $3x^2-y^2=4$ | (IV) $\sqrt{3}/2$ |
Final Matching (List–I → List–II)
| Item | Result | Match |
|---|---|---|
| (A) Eccentricity of \(x^2-4x+4y+4y^2=12\) | \(\displaystyle \frac{\sqrt{3}}{2}\) | (IV) |
| (B) Latus rectum of \(5x^2+9y^2=45\) | \(\displaystyle \frac{10}{3}\) | (I) |
| (C) Line \(x+y=a\) touches \(y=x-x^2\) ⇒ value of \(a\) | \(1\) | (II) |
| (D) Eccentricity of \(3x^2-y^2=4\) | \(2\) | (III) |
Answer: (A) → (IV), (B) → (I), (C) → (II), (D) → (III)
Solutions (with steps)
(A) \(x^2-4x+4y+4y^2=12\) \[ (x-2)^2-4+4\!\left[(y+\tfrac12)^2-\tfrac14\right]=12 \;\Rightarrow\; (x-2)^2+4(y+\tfrac12)^2=17 \] \[ \frac{(x-2)^2}{17}+\frac{(y+\tfrac12)^2}{17/4}=1 \] Ellipse with \(a^2=17,\; b^2=\tfrac{17}{4}\Rightarrow e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\tfrac14}=\frac{\sqrt{3}}{2}. \)
(B) \(5x^2+9y^2=45 \Rightarrow \frac{x^2}{9}+\frac{y^2}{5}=1\). Here \(a=\sqrt{9}=3,\; b=\sqrt{5}\). Latus rectum length (ellipse) \(= \dfrac{2b^2}{a}=\dfrac{2\cdot5}{3}=\dfrac{10}{3}.\)
(C) Tangent: \(x+y=a \Rightarrow y=-x+a\). Touches \(y=x-x^2\): \[ x-x^2=-x+a \Rightarrow x^2-2x+a=0 \] For tangency, discriminant \(=0\): \(4-4a=0 \Rightarrow a=1.\)
(D) \(3x^2-y^2=4 \Rightarrow \dfrac{x^2}{4/3}-\dfrac{y^2}{4}=1\). Hyperbola with \(a^2=\tfrac{4}{3},\, b^2=4\). \[ e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{4}{4/3}}=\sqrt{1+3}=2. \]
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.