Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MAH CET MCA Previous Year Questions (PYQs)

MAH CET MCA Trigonometry PYQ


MAH CET MCA PYQ
Find the distance from the eye at which a coin of $2\ \text{cm}$ diameter should be held so as to conceal the full moon whose angular diameter is $31'$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Small–angle $\theta\ (\text{radians}) \approx \dfrac{\text{diameter}}{\text{distance}}$. $\theta = 31' = \dfrac{31\pi}{180\times60}$. $d = \dfrac{0.02}{\theta} = \dfrac{0.02\times10800}{31\pi} \approx 2.217\ \text{m}$.

MAH CET MCA PYQ
The number of real solutions of $\sqrt{1+\cos 2x}=\sqrt{2},\cos^{-1}(\cos x)$ in $\left[\frac{\pi}{2},\pi\right]$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$\sqrt{1+\cos 2x}=\sqrt{2},|\cos x|$. On $\left[\frac{\pi}{2},\pi\right]$, $\cos x\le 0$ so $|\cos x|=-\cos x$. LHS $=\sqrt{2},|\cos x|$, RHS $=\sqrt{2},|\cos x|$ only if $\cos^{-1}(\cos x)=|\cos x|$, which never holds for $x\in\left[\frac{\pi}{2},\pi\right]$. Hence no real solution.

MAH CET MCA PYQ
A pendulum swings through an angle of $30{^{\circ}}$ and describes an arc 8.8cm in length. The length of the pendulum is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution



MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...