A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
1
The number of real solutions of $\sqrt{1+\cos 2x}=\sqrt{2},\cos^{-1}(\cos x)$ in $\left[\frac{\pi}{2},\pi\right]$ is
Solution
$\sqrt{1+\cos 2x}=\sqrt{2},|\cos x|$. On $\left[\frac{\pi}{2},\pi\right]$, $\cos x\le 0$ so $|\cos x|=-\cos x$.
LHS $=\sqrt{2},|\cos x|$, RHS $=\sqrt{2},|\cos x|$ only if $\cos^{-1}(\cos x)=|\cos x|$, which never holds for $x\in\left[\frac{\pi}{2},\pi\right]$.
Hence no real solution.
Online Test Series, Information About Examination, Syllabus, Notification and More.