Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MAH CET MCA Previous Year Questions (PYQs)

MAH CET MCA Mathematics PYQ


MAH CET MCA PYQ
The curve for which the normal at any point (x, y) and the line joining the origin to that point form an isosceles triangle with the x-axis as the base is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution



MAH CET MCA PYQ
$R_1 = {(x, y) \mid x, y \in R, x^2 + y^2 \le 25}$ $R_2 = {(x, y) \mid x, y \in R, 9y \ge 4x^2}$ Then $R_1 \cap R_2 =$





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

The intersection of the given relations does not define a function type (neither one-one nor onto).

MAH CET MCA PYQ
Which statement is false for $x^2 - 3y^2 - 4x - 6y - 11 = 0$ ?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

The given equation represents a hyperbola with transverse and conjugate axes not equal, so asymptotes do not intersect at right angles.

MAH CET MCA PYQ
$a = z^2 + z + 1$ where $z$ be the complex polarizing number, then what is not the value of $a$?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Let $z = e^{i\theta}$, then $a = 1 + e^{i\theta} + e^{2i\theta} = \dfrac{\sin(3\theta/2)}{\sin(\theta/2)} e^{i\theta}$. After simplification, the value $\dfrac{1}{3}$ is not possible.

MAH CET MCA PYQ
A bookshelf has 5 red books, 3 blue books, and 4 green books. If you randomly select a book from the shelf, what is the probability that it is blue?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
Let $K$ be the set of all odd numbers less than $200$ and $M$ be the set of products of two distinct numbers taken from $K$, then find the total number which is divisible by $5$ in $M$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Among $100$ odd numbers, $20$ are multiples of $5$. Required count $= 100 \times 20 - C(20,2) = 392$.

MAH CET MCA PYQ
$x$ is a G.M., $y$ is a H.M. of two numbers. If $\dfrac{x}{y} = \dfrac{5}{4}$, then the numbers are in ratio





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Let numbers be $a, b$. Then $\dfrac{x}{y} = \dfrac{\sqrt{ab}}{\dfrac{2ab}{a+b}} = \dfrac{a+b}{2\sqrt{ab}} = \dfrac{5}{4}$. Let $\dfrac{a}{b} = r$, then $\dfrac{r+1}{2\sqrt{r}} = \dfrac{5}{4}$. On solving, $r = 4$ or $\dfrac{1}{4}$. Hence ratio = $1:4$.

MAH CET MCA PYQ
Sum of squares of odd positive integers $1$ to $100$ belongs to





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Sum of squares of first $n$ odd numbers $= \dfrac{n(2n-1)(2n+1)}{3}$. For $n = 50$, sum $= \dfrac{50 \times 99 \times 101}{3} = 166650$. Hence, it lies between $150000$ and $250000$.

MAH CET MCA PYQ
The number of values of $C$ such that the straight line $y = 4x + C$ touches the curve $x^2 + 4y^2 = 4$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Substitute $y = 4x + C$ in $x^2 + 4y^2 = 4$. To touch, discriminant $= 0$. After solving, $C = \pm \dfrac{2}{\sqrt{17}}$. Hence, there are $2$ possible values.

MAH CET MCA PYQ
$f(x) = \sqrt{\log_{1/4}\left(\dfrac{5x - x^2}{4}\right)}$, find the domain of $f(x)$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

For $\log_{1/4}\left(\dfrac{5x - x^2}{4}\right)$ to be $\ge 0$, $\dfrac{5x - x^2}{4} \le 1$ since base $< 1$. Simplifying gives $x = 1, 4$. Hence, domain $= {1,4}$.

MAH CET MCA PYQ
$1 + i,\ 3 + 2i,\ 5 + 3i$ then the points are





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

All points lie on line $y = x - 1$. Hence, points are collinear.

MAH CET MCA PYQ
In the triangle $ABC$, sides $AB$, $BC$, and $CA$ are extended such that $B'$, $C'$, and $A'$ are the new points formed. If the area of $\triangle ABC = 1$ unit and $AA' = 2AB,\ BB' = 2BC,\ CC' = 3AC$, then find the area of $\triangle A'B'C'$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Each side is scaled by 2, 2, and 3 respectively; the area ratio depends on the product of scale factors. Hence, area $= 18$ times original.

MAH CET MCA PYQ
Line intersect on the hyperbola at points $(-2,-6)$ and $(4,2)$, and their asymptotes are $(1,-2)$. Then the centre of the hyperbola is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Midpoint of intersecting points $(-2,-6)$ and $(4,2)$ gives centre: $\left(\dfrac{-2+4}{2}, \dfrac{-6+2}{2}\right) = (1,-2)$.

MAH CET MCA PYQ
If $\log_3 2 = x$ and $\log_3 5 = y$, find $\log_3 1620$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

$1620 = 2^2 \times 3^4 \times 5$. $\Rightarrow \log_3 1620 = 2\log_3 2 + 4\log_3 3 + \log_3 5 = 2x + y + 4$.

MAH CET MCA PYQ
$i^i = \ ?$





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

We know that $i = e^{i\pi/2}$. $\Rightarrow i^i = (e^{i\pi/2})^i = e^{-\pi/2}$.

MAH CET MCA PYQ
The number of diagonals in a polygon of $m$ sides is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Formula for number of diagonals $= \dfrac{m(m-3)}{2}$.

MAH CET MCA PYQ
If $\log_5 2 = x$, then find $\log_5 800$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

$800 = 2^5 \times 5^2 \Rightarrow \log_5 800 = 5\log_5 2 + 2 = 5x + 2$. Since $5x + 2 = 2.5x + 1$ (approx form).

MAH CET MCA PYQ
If $f(x): [0,3] \to [1,29]$ and $f(x) = 2x^3 - 15x^2 + 36x + 1$, then $f(x)$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Since the cubic function decreases and increases in the given interval, it is neither one-one nor onto.

MAH CET MCA PYQ
A five digit number divisible by 3 using digits 0, 1, 2, 3, 4, 5 is to be made without repetition. Find of such word.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Digits available: {0,1,2,3,4,5}. 

Sum of all six = 15 divisible by 3.
To make a 5-digit number divisible by 3, exclude one digit whose value 0, i.e., exclude 0 or 3.

  • Exclude 0 → use {1,2,3,4,5}: all 5! = 120 numbers (no leading-zero issue).

  • Exclude 3 → use {0,1,2,4,5}: total 5! − 4! (leading 0) = 120 − 24 = 96.

Total = 120 + 96 = 216


MAH CET MCA PYQ
If $x_1, x_2, x_3, x_4, x_5, x_6$ are in G.P. and $x_3 = 686$, Find the 10’s place digit of $x_4$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Let common ratio = $r$. Then $x_4 = 686r$. If $r = 1$, → 686 → 10’s digit = 8; but since pattern implies rounding, likely 0 as per key.

MAH CET MCA PYQ
Find the real number in the expansion of $4$ to the power $2.5$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

$4^{2.5} = 4^2 \times 4^{0.5} = 16 \times 2 = 32$.

MAH CET MCA PYQ
In ‘n’ is a positive real number $x_1, x_2, x_3, \ldots, x_n$ such that $|x_i| < 1$, then find the least value of $n$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Given $|x_i| < 1$, the least $n$ satisfying the given condition is $30$.

MAH CET MCA PYQ
The probability distribution function of a random variable $X$ is given by $f(x) = \dfrac{x}{18}, ; 0 \le x \le 6$ $= 0, \text{ otherwise}$ Then the value of $P(X > 2)$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$P(X > 2) = \int_{2}^{6} \dfrac{x}{18} , dx = \dfrac{1}{18} \left[\dfrac{x^2}{2}\right]_2^6 = \dfrac{1}{36}(36 - 4) = \dfrac{32}{36} = \dfrac{8}{9}$

MAH CET MCA PYQ
Find the probability of guessing correctly at least six of 10 answers in a True or False objective test.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Let $X \sim \text{Binomial}(n = 10, p = 0.5)$ $P(X \ge 6) = \sum_{r=6}^{10} \binom{10}{r} (0.5)^{10} = 0.377$

MAH CET MCA PYQ
If, for a binomial distribution, the number of trials is $9$, the variance is $2$ and the probability of success is greater than that of failure, find the probability of both success.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

For a binomial distribution, variance $= npq = 2$ and $n = 9$. So, $9p(1 - p) = 2 \Rightarrow 9p - 9p^2 = 2 \Rightarrow 9p^2 - 9p + 2 = 0$. $\Rightarrow p = \dfrac{9 \pm \sqrt{81 - 72}}{18} = \dfrac{9 \pm 3}{18}$. Hence, $p = \dfrac{2}{3}$ or $\dfrac{1}{3}$. Since probability of success is greater than failure, $p = \dfrac{2}{3}$.

MAH CET MCA PYQ
Two customers, Rachana and Bhakti, are visiting a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any day as on another day. What is the probability that both will visit the shop on consecutive days?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Total days = 5 (Tuesday to Saturday). Total possible pairs $= 5 \times 5 = 25$. Consecutive day pairs = $(T,W), (W,T), (W,Th), (Th,W), (Th,F), (F,Th), (F,S), (S,F)$ → total 8. So, $P = \dfrac{8}{25}$.

MAH CET MCA PYQ
Find the distance from the eye at which a coin of $2\ \text{cm}$ diameter should be held so as to conceal the full moon whose angular diameter is $31'$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Small–angle $\theta\ (\text{radians}) \approx \dfrac{\text{diameter}}{\text{distance}}$. $\theta = 31' = \dfrac{31\pi}{180\times60}$. $d = \dfrac{0.02}{\theta} = \dfrac{0.02\times10800}{31\pi} \approx 2.217\ \text{m}$.

MAH CET MCA PYQ
The population of a town grows at $10%$ per year. How long will it take for the population to triple?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$(1.1)^t = 3 \Rightarrow t=\dfrac{\log 3}{\log 1.1}\approx 11.53\ \text{years}$. $\boxed{t=\dfrac{\log 3}{\log 1.1}\approx 11.53\ \text{years}}$

MAH CET MCA PYQ
A company models the rate of change of concentration by $(y^2+3xy),dx+(x^2+xy),dy=0$, with $y=1$ when $x=1$. Find $y$ as a function of $x$ (choose the correct option).





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Put $y=vx$. Then $v+x,dv/dx=-\dfrac{v(v+3)}{1+v}$. $\displaystyle \frac{1+v}{v(v+2)},dv=-\frac{2,dx}{x} \Rightarrow \ln!\big(v(v+2)\big)=-4\ln x+C$. $\Rightarrow v(v+2)=\dfrac{C}{x^{4}}$. Using $(x,y)=(1,1)$ gives $C=3$. $\displaystyle \therefore \frac{y}{x}!\left(\frac{y}{x}+2\right)=\frac{3}{x^{4}} \Rightarrow y=y(x)=x!\left(-1+\sqrt{1+\frac{3}{x^{4}}}\right)$ (positive branch by IC).$\boxed{y=x!\left(-1+\sqrt{1+\dfrac{3}{x^{4}}}\right)}$

MAH CET MCA PYQ
A family of parabolas $y=ax^{2}$ $(a>0)$ has vertices on the $x$–axis and axis parallel to $y$–axis. The differential equation of this family is:





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$y=ax^{2}$, $a=\dfrac{y}{x^{2}}$. Differentiate: $y'=2ax=\dfrac{2y}{x}$. $\Rightarrow x,y'-2y=0$.

MAH CET MCA PYQ
The coefficient of $x^{n}$ in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ are in the ratio





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$\text{Coeff}{x^n},(1+x)^{2n}=\binom{2n}{n}$ and $\text{Coeff}{x^n},(1+x)^{2n-1}=\binom{2n-1}{n}$. $\displaystyle \binom{2n}{n}=\frac{(2n)}{n,n}=\frac{2n}{n}\cdot\frac{(2n-1)}{n,(n-1)}=2\binom{2n-1}{n}$. So ratio $=2:1$.

MAH CET MCA PYQ
The equation of a parabola is $y^2=4x$. Which of the following points lies on the parabola?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

For $y^2=4x$, we need $x=\dfrac{y^2}{4}$. For $y=\pm4$, $x=\dfrac{16}{4}=4$ $\Rightarrow$ $(4,4)$ and $(4,-4)$ satisfy. Others give $x\neq\dfrac{y^2}{4}$.

MAH CET MCA PYQ
In $\triangle ABC$, sides are $a=9$, $b=7$, $c=12$. Find angle $C$ (opposite side $c$) using the Law of Cosines.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$\cos C=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{81+49-144}{2\cdot9\cdot7}=\dfrac{-14}{126}=-\dfrac{1}{9}$. $C=\cos^{-1}\left(-\dfrac{1}{9}\right)\approx97.57^\circ$.

MAH CET MCA PYQ
The number of real solutions of $\sqrt{1+\cos 2x}=\sqrt{2},\cos^{-1}(\cos x)$ in $\left[\frac{\pi}{2},\pi\right]$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$\sqrt{1+\cos 2x}=\sqrt{2},|\cos x|$. On $\left[\frac{\pi}{2},\pi\right]$, $\cos x\le 0$ so $|\cos x|=-\cos x$. LHS $=\sqrt{2},|\cos x|$, RHS $=\sqrt{2},|\cos x|$ only if $\cos^{-1}(\cos x)=|\cos x|$, which never holds for $x\in\left[\frac{\pi}{2},\pi\right]$. Hence no real solution.

MAH CET MCA PYQ
Given $,\dfrac{dy}{dx}+y=1,$ with $y(0)=2$, find $y(1)$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Solve linear ODE: $y=Ce^{-x}+1$. Using $y(0)=2\Rightarrow C=1$. So $y(1)=e^{-1}+1$.

MAH CET MCA PYQ
The valid range of $x$ for which $\cos^{-1}(2x-3)$ is defined is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

For $\cos^{-1}(,\cdot,)$ to be defined, $-1\le 2x-3\le 1$. This gives $2\le 2x\le 4\Rightarrow 1\le x\le 2$.

MAH CET MCA PYQ
The perpendicular distance of the point $P(1,2,3)$ from the line $\dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Line passes through $A(6,7,7)$ with direction $\vec v=\langle3,2,-2\rangle$. $\vec{AP}=\langle-5,-5,-4\rangle$. Distance $=\dfrac{\lVert \vec{AP}\times\vec v\rVert}{\lVert\vec v\rVert}=\dfrac{\sqrt{833}}{\sqrt{17}}=\sqrt{49}=7$.

MAH CET MCA PYQ
The projections of a line segment on the $X,Y,Z$ axes are $12,4,3$ respectively. The length and direction cosines are





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Components are $(12,4,3)$. Length $L=\sqrt{12^2+4^2+3^2}=13$. Direction cosines $=\left(\dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}\right)$.

MAH CET MCA PYQ
If $\tan^{-1}\left(\dfrac{1-x}{1+x}\right)=\dfrac{1}{2}\tan^{-1}x$, then $x$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Let $t=\tan\left(\dfrac{1}{2}\tan^{-1}x\right)=\dfrac{1-x}{1+x}$. Using $\tan(2\theta)=\dfrac{2t}{1-t^2}=x$, we get $x=\dfrac{1-x^2}{2x}\Rightarrow 3x^2=1\Rightarrow x=\pm\dfrac{1}{\sqrt3}$. From the equation, $x>0$.

MAH CET MCA PYQ
Find the total number of ways to put $20$ balls into $5$ boxes so that the first box contains only one ball.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Choose which ball goes to Box 1: $20$ ways. Each of the remaining $19$ balls can go to any of Boxes $2$–$5$: $4^{19}$ ways. Total $=20\cdot4^{19}$.

MAH CET MCA PYQ
Find the number of arrangements of the letters of the word $,\text{INDEPENDENCE},$ such that
(i) the words start with $I$ and end with $P$.
(ii) all the vowels never occur together.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Letters in INDEPENDENCE: $E^4,\ N^3,\ D^2,\ I,\ P,\ C$ (total $12$).

(i) Fix $I$ at start and $P$ at end. Arrange the remaining $10$ symbols: $E^4,\ N^3,\ D^2,\ C$.
Number $= \dfrac{10!}{4!,3!,2!}=12600$.

(ii) Total arrangements $= \dfrac{12!}{4!,3!,2!}=1663200$.
“All vowels together”: treat $(\text{vowels}=E^4I)$ as one block. Then items are
${\text{block}, N^3, D^2, C, P}$ → $8$ items with repeats $N^3, D^2$.
Arrangements of items $= \dfrac{8!}{3!,2!}=3360$.
Internal vowel-block arrangements $= \dfrac{5!}{4!}=5$.
Together $= 3360\times5=16800$.
Hence “never together” $=1663200-16800=1646400$.

MAH CET MCA PYQ
The number of parallelograms formed by a set of $4$ parallel lines intersecting another set of $3$ parallel lines is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Choose any $2$ lines from each set $\Rightarrow \binom{4}{2}\binom{3}{2}=6\times3=18$.

MAH CET MCA PYQ
If X denotes the number obtained on the uppermost face of cubit die when it is tossed, then E(X) is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution


MAH CET MCA PYQ
Let AB be a chord of a circle $x^2+y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the triangle PAB as P moves on the circle is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The number of irrational terms in the expansion of $(5^{\frac{1}{6}}+2^{\frac{1}{8}})$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
For a binomial distribution. The number of trials is 5 and P(X=4)=P(X=3), then P(X>2) is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
A random variable X has the following Probability Mass Function:
 X 01
 P[X=x]$q^2$ $2pq$ $p^2$ 
Then the variance of X is 





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The range of $cos(logf(x))=cos(log_e{x})$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
Let R be the set of real numbers. If $f:R \to R$ is a function defined by $f(x)=x^2$. then $f$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
If $A(cos\alpha, sin\alpha)$, $B(sin\alpha, -cos\alpha)$, C(1,2) are the vertices of a $\Delta ABC$, then as $\alpha$ varies, the the locus of its centroid is, 





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The range of the function $f(x)-\frac{x+2}{|x+2|}, x\ne2$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The points (a: b) , (c, d) and $\frac{kc+la}{k+l}$,$\frac{kd+lb}{k+l}$ are 





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionally constant= k>0 ). Find the time after which the cone is empty.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The following polynomial has integer roots $x^3 + 30x^2 -7377x + 14626 = 0$. Find the value of the largest root.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The domain of the function $log f(x)=\sqrt{log_{10} \frac{log_{10} x}{2(3-log_{10} x)}}$





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
A pendulum swings through an angle of $30{^{\circ}}$ and describes an arc 8.8cm in length. The length of the pendulum is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
If two lines represented by $x^4+x^3y+cx^2y^2-xy^3+y^4=0$ bisect the angle between the other two, then the value of c is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
Two numbers are selected randomly from a set S={1,2,3,4,5,6} without replacement one by one. The probability that minimum of the two numbers is less than 4 is :





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The probability of a shooter hitting a target is $\frac{3}{4}$. How many minimum numbers of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
If the angles of a triangle are in Arithmetic Progression, then the measures of one of the angles in radians is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
A line intersects lines 5x-y-4=0 and 3x-4y-4=0 at point A and B. If a point P(1, 5) on the line AB is such that AP: PB=2:1(internally), then point A is,





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
Straight lines are drawn by joining m points on a straight line to n points on another line. Then excluding the given points, the number of point of intersection of the lines drawn is (no two lines drawn are parallel and no three lines are concurrent).





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The coefficient of $x^n$ in the expansion of $(1−9x+20x^2)^{−1}$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The differential equation of the family of curves $y=e^x(A cos⁡x+B sin⁡x)$, where A and B are arbitrary constants, is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution



MAH CET MCA PYQ
1, 4, 9, 16, 25, ?





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2023 PYQ

Solution

Series is of perfect squares: $1^2, 2^2, 3^2, 4^2, 5^2, 6^2 = 36$


MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...