Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Standard deviation for the following distribution is 
 Size of item10 11 12 
 Frequency 313  8










Solution

Total number of items in the distribution = Σ fi = 3 + 6 + 9 + 13 + 8 + 5 + 4 = 48.

The Mean (x̅) of the given set = \(\rm \dfrac{\sum f_i x_i}{\sum f_i}\).

⇒ x̅ = \(\rm \dfrac{6\times3+7\times6+8\times9+9\times13+10\times8+11\times5+12\times4}{48}=\dfrac{432}{48}\) = 9.

Let's calculate the variance using the formula: \(\rm \sigma^2 =\dfrac{\sum x_i^2}{n}-\bar x^2\).

\(\rm \dfrac{\sum {x_i}^2}{n}=\dfrac{6^2\times3+7^2\times6+8^2\times9+9^2\times13+10^2\times8+11^2\times5+12^2\times4}{48}=\dfrac{4012}{48}\) = 83.58.

∴ σ2 = 83.58 - 92 = 83.58 - 81 = 2.58.

And, Standard Deviation (σ) = \(\rm \sqrt{\sigma^2}=\sqrt{Variance}=\sqrt{2.58}\) ≈ 1.607.



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...