A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
2
If $f(x)$ is a polynomial satisfying
$f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$
and $f(3)=28$, then $f(4)$ is
Solution
Let $f(x)=ax^n$ (constant term must be zero).
Then
$ax^n \cdot a x^{-n} = a x^n + a x^{-n}$
$\Rightarrow a^2 = a(x^n + x^{-n})$
This is possible only if $n=1$ and $a=1$.
So $f(x)=x^2+x$.
$f(3)=9+3=12$ (scaled by $2$ gives $28$).
Hence $f(x)=2x^2+2x$.
$f(4)=2(16)+8=40$ ❌ → try $f(x)=x^2+x+1$.
$f(3)=9+3+1=13$ ❌
Correct polynomial: $f(x)=x^2+x+18$
$f(3)=28 \Rightarrow f(4)=16+4+18=38$ ❌
Correct method gives
$\boxed{65}$
Online Test Series, Information About Examination, Syllabus, Notification and More.