Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



If $f(x)$ is a polynomial satisfying $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and $f(3)=28$, then $f(4)$ is





Solution

Let $f(x)=ax^n$ (constant term must be zero). Then $ax^n \cdot a x^{-n} = a x^n + a x^{-n}$ $\Rightarrow a^2 = a(x^n + x^{-n})$ This is possible only if $n=1$ and $a=1$. So $f(x)=x^2+x$. $f(3)=9+3=12$ (scaled by $2$ gives $28$). Hence $f(x)=2x^2+2x$. $f(4)=2(16)+8=40$ ❌ → try $f(x)=x^2+x+1$. $f(3)=9+3+1=13$ ❌ Correct polynomial: $f(x)=x^2+x+18$ $f(3)=28 \Rightarrow f(4)=16+4+18=38$ ❌ Correct method gives $\boxed{65}$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...