Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Find the value of $x$, if: $\left( 2^{\frac{1}{\log_x 4}} \right) \left( 2^{\frac{1}{\log_x 16}} \right) \left( 2^{\frac{1}{\log_x 256}} \right) \cdots = 2$





Solution

We are given: $\left( 2^{\frac{1}{\log_x 4}} \right) \left( 2^{\frac{1}{\log_x 16}} \right) \left( 2^{\frac{1}{\log_x 256}} \right) \cdots = 2$ Using the identity $a^{\frac{1}{\log_b a}} = b$ : $4 = x^2,\; 16 = x^4,\; 256 = x^8$ So, $2^{\frac{1}{\log_x 4}} = 2^{\frac{1}{\log_x x^2}} = 2^{1/2} = 2^{\frac12}$ $2^{\frac{1}{\log_x 16}} = 2^{\frac{1}{\log_x x^4}} = 2^{1/4} = 2^{\frac14}$ $2^{\frac{1}{\log_x 256}} = 2^{\frac{1}{\log_x x^8}} = 2^{1/8} = 2^{\frac18}$ Thus the infinite product is: $2^{\frac12} \cdot 2^{\frac14} \cdot 2^{\frac18} \cdot 2^{\frac1{16}} \cdots$ Combine the exponents: $2^{\left( \frac12 + \frac14 + \frac18 + \frac1{16} + \cdots \right)}$ The geometric series: $\frac12 + \frac14 + \frac18 + \frac1{16} + \cdots = 1$ Therefore, the product equals: $2^1 = 2$ Hence the value of $x$ is: $\boxed{\frac12}$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...