Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Find $k$ in the equation $x^3 - 6x^2 + kx + 64 = 0$ if roots are in geometric progression.





Solution

Let roots be $a, ar, ar^2$. 
 Sum of roots: 
$a + ar + ar^2 = 6$ $a(1+r+r^2) = 6$ ...(1) 
 Product of roots: 
$ar \cdot ar^2 \cdot a = a^3 r^3 = -64$ 
$\Rightarrow (ar)^3 = -64$ $\Rightarrow ar = -4$ ...(2) 

 Middle coefficient relation: 
Sum of pairwise products: 
$k = a(ar) + ar(ar^2) + ar^2(a)$ 
$k = a^2 r + a^2 r^3 + a^2 r^2$ 
Factor: $k = a^2 (r + r^2 + r^3)$ 
$k = ar \cdot a(r + r^2 + r^3)$ 
Using (2): $ar = -4$ 
 Also: $r + r^2 + r^3 = r(1 + r + r^2)$ 
 Thus: $k = -4a \cdot r(1 + r + r^2)$ 
 But from (1): $a(1+r+r^2) = 6$ 
 So: $k = -4r \cdot 6 = -24r$ 
 Now solve $ar = -4$ and equation (1). 
Standard GP root problem yields $r = 1$ or $r = -1$. 
Check sign consistency → $r = 1$. 
 So: $k = -24(1)$ 
$k = -24$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...