Solution
Let
$I = \displaystyle \int_{0}^{\pi} \frac{x \sin x}{1+\cos^2 x}dx$
Use property:
$I = \int_{0}^{\pi} f(x)dx = \int_{0}^{\pi} f(\pi - x)dx$
Compute
$f(\pi - x) = \dfrac{(\pi - x)\sin(\pi - x)}{1 + \cos^2(\pi - x)}
= \dfrac{(\pi - x)\sin x}{1 + \cos^2 x}$
Add them:
$f(x) + f(\pi - x) = \dfrac{\pi \sin x}{1 + \cos^2 x}$
So,
$2I = \displaystyle \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^2 x}dx$
Let $u = \cos x$, $du = -\sin x,dx$.
When $x=0$, $u=1$, and when $x=\pi$, $u=-1$:
$2I = \pi \displaystyle \int_{1}^{-1} \frac{-du}{1+u^2}$
$2I = \pi \displaystyle \int_{-1}^{1} \frac{du}{1+u^2}$
This equals:
$2I = \pi\left[\tan^{-1}u\right]_{-1}^{1}
= \pi\left(\dfrac{\pi}{4} - \left(-\dfrac{\pi}{4}\right)\right)$
$2I = \pi \cdot \dfrac{\pi}{2} = \dfrac{\pi^2}{2}$
So,
$I = \dfrac{\pi^2}{4}$