A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
4
If $(12x)_3 = (123)_x$ then the value of $x$ is:
Solution
Convert $(12x)_3$ to decimal:
$1\cdot 3^2 + 2\cdot 3 + x = 9 + 6 + x = 15 + x$
Convert $(123)_x$ to decimal:
$1\cdot x^2 + 2\cdot x + 3$
Equate:
$15 + x = x^2 + 2x + 3$
Bring all to one side:
$x^2 + x - 12 = 0$
Factor:
$(x + 4)(x - 3) = 0$
So $x = 3$ or $x = -4$
But base $x$ must be > 3 (because digits 1,2,3 appear).
Allowed value = 3 (but digit '3' cannot appear in base 3).
So no valid base exists.
Online Test Series, Information About Examination, Syllabus, Notification and More.