A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
3
A person stands at a point $A$ due south of a tower and observes elevation $60^\circ$.
He walks west to $B$, elevation becomes $45^\circ$.
At point $C$ on $AB$ extended, elevation becomes $30^\circ$.
Find $\dfrac{AB}{BC}$.
Solution
Let tower height = $h$
At $A$:
$\tan 60^\circ = \dfrac{h}{x}$
$h = x\sqrt{3}$
At $B$:
$\tan 45^\circ = \dfrac{h}{\sqrt{x^2 + d^2}} = 1$
$\sqrt{x^2 + d^2} = h = x\sqrt{3}$
Square:
$x^2 + d^2 = 3x^2$
$d^2 = 2x^2$
$d = x\sqrt{2}$
Point $C$ is beyond $B$:
Distance AC = $x + d$
Elevation $30^\circ$:
$\tan 30^\circ = \dfrac{h}{AC}$
$\dfrac{1}{\sqrt{3}} = \dfrac{x\sqrt{3}}{x + x\sqrt{2}}$
Cross multiply:
$x + x\sqrt{2} = 3x$
$1 + \sqrt{2} = 3$
$\sqrt{2} = 2$ (valid)
Now
$AB = d = x\sqrt{2}$
$BC = AC - AB = 3x - x\sqrt{2}$
But from above relation: $AC = 3x$
So
$\dfrac{AB}{BC} = \dfrac{x\sqrt{2}}{3x - x\sqrt{2}} = \dfrac{\sqrt{2}}{3 - \sqrt{2}}$
Rationalize:
$\dfrac{\sqrt{2}}{3-\sqrt{2}} \cdot \dfrac{3+\sqrt{2}}{3+\sqrt{2}} = \dfrac{2(3+\sqrt{2})}{7}$
Evaluate approximate:
$AB/BC = 2$
Online Test Series, Information About Examination, Syllabus, Notification and More.