A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
2
If $a \ne p$, $b \ne q$, $c \ne r$ and
$\left|\begin{matrix}
p & b & c \\
a & q & c \\
a & b & r
\end{matrix}\right| = 0$,
then the value of $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c}$ is
Solution
Solution:
Given
$\left|\begin{matrix}
p & b & c \\
a & q & c \\
a & b & r
\end{matrix}\right| = 0,$
the rows are linearly dependent.
Using the determinant identity, we get
$\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 1.$
Online Test Series, Information About Examination, Syllabus, Notification and More.