Let $u=\tan x$, then $\sin x=\dfrac{u}{\sqrt{1+u^{2}}}$ and $du=\sec^{2}x\,dx$.
$\int_{0}^{1}\dfrac{u}{\sqrt{1+u^{2}}}du=\left[\sqrt{1+u^{2}}\right]_{0}^{1}=\sqrt2-1$.
Hence $a=-1$.
Online Test Series, Information About Examination, Syllabus, Notification and More.