A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
3
The value of $\displaystyle \int_{0}^{\pi/2}\sin^{4}x\,\cos^{4}x\,dx$ is –
Solution
Solution:
$\sin^{4}x\cos^{4}x=\big(\sin^{2}x\cos^{2}x\big)^2
=\left(\dfrac{\sin 2x}{2}\right)^{4}
=\dfrac{1}{16}\sin^{4}2x.$
Thus
$J=\displaystyle\int_{0}^{\pi/2}\sin^{4}x\cos^{4}x\,dx
=\dfrac{1}{16}\!\int_{0}^{\pi/2}\!\sin^{4}2x\,dx
=\dfrac{1}{32}\!\int_{0}^{\pi}\!\sin^{4}u\,du.$
Using $\int_{0}^{\pi}\sin^{4}u\,du=\dfrac{3\pi}{8}$,
we get $J=\dfrac{1}{32}\cdot\dfrac{3\pi}{8}=\dfrac{3\pi}{256}$.
Online Test Series, Information About Examination, Syllabus, Notification and More.