Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



The sum of the infinite series $\dfrac{2^2}{2!} + \dfrac{2^4}{4!} + \dfrac{2^6}{6!} + \dfrac{2^8}{8!} + \dots$ is equal to —





Solution

We know that $e^x = 1 + \dfrac{x}{1!} + \dfrac{x^2}{2!} + \dfrac{x^3}{3!} + \dots$ Let $S = \dfrac{2^2}{2!} + \dfrac{2^4}{4!} + \dfrac{2^6}{6!} + \dots$ Write using even terms of $e^x$: $e^2 = 1 + 2 + \dfrac{2^2}{2!} + \dfrac{2^3}{3!} + \dfrac{2^4}{4!} + \dots$ and $e^{-2} = 1 - 2 + \dfrac{2^2}{2!} - \dfrac{2^3}{3!} + \dfrac{2^4}{4!} - \dots$ Adding both, $e^2 + e^{-2} = 2\left(1 + \dfrac{2^2}{2!} + \dfrac{2^4}{4!} + \dfrac{2^6}{6!} + \dots\right)$ So, $S = \dfrac{1}{2}\left(e^2 + e^{-2} - 2\right) = \dfrac{1}{2}\left(\dfrac{e^4 + 1 - 2e^2}{e^2}\right) = \dfrac{(e^2 - 1)^2}{2e^2}.$


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...