A Place for Latest Exam wise Questions, Videos, Previous Year Papers, Study Stuff for MCA Examinations - NIMCET
Previous Year Question (PYQs)
4
A light ray emits from the origin making an angle $30^\circ$ with the positive $x$-axis.
After getting reflected by the line $x+y=1$, if this ray intersects the $x$-axis at $Q$, then the abscissa of $Q$ is:
Solution
$y=\tan30^\circ,x=\dfrac{x}{\sqrt3}$ hits the mirror $x+y=1$ at
$P\left(\dfrac{\sqrt3}{\sqrt3+1},,\dfrac{1}{\sqrt3+1}\right)$.
The mirror’s normal is along $(1,1)$, so reflecting the unit direction $u=(\cos30^\circ,\sin30^\circ)=\left(\dfrac{\sqrt3}{2},\dfrac12\right)$ about the line gives
$u'=u-2(u\cdot \hat n)\hat n=\left(-\dfrac12,-\dfrac{\sqrt3}{2}\right)$,
i.e. slope $m'=\sqrt3$.
The reflected ray through $P$ is $y-y_0=\sqrt3(x-x_0)$.