Question: Find the value of:
$$ \sum_{r=1}^{n} \frac{nP_r}{r!} $$
Solution:
We know: \( nP_r = \frac{n!}{(n - r)!} \Rightarrow \frac{nP_r}{r!} = \frac{n!}{(n - r)! \cdot r!} = \binom{n}{r} \)
Therefore,
$$ \sum_{r=1}^{n} \frac{nP_r}{r!} = \sum_{r=1}^{n} \binom{n}{r} = 2^n - 1 $$
Final Answer: $$ \boxed{2^n - 1} $$
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.