\[ \sin x = \sin y \quad \text{and} \quad \cos x = \cos y \]
\[ \sin x = \sin y \Rightarrow x = y + 2n\pi \quad \text{or} \quad x = \pi - y + 2n\pi \]
\[ \cos x = \cos y \Rightarrow x = y + 2m\pi \quad \text{or} \quad x = -y + 2m\pi \]
For both \( \sin x = \sin y \) and \( \cos x = \cos y \) to be true, the only consistent solution is:
\[ x = y + 2n\pi \Rightarrow x - y = 2n\pi \]
\[ \boxed{x - y = 2n\pi \quad \text{for } n \in \mathbb{Z}} \]
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.