\[ \text{Evaluate } \tan\left(\frac{\pi}{4} + \theta\right) \cdot \tan\left(\frac{3\pi}{4} + \theta\right) \]
\[ \tan\left(A + B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] But we don’t need expansion — use known angle values:
\[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta} \]
\[ \tan\left(\frac{3\pi}{4} + \theta\right) = \frac{-1 + \tan\theta}{1 + \tan\theta} \]
\[ \left(\frac{1 + \tan\theta}{1 - \tan\theta}\right) \cdot \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right) \]
Simplify:
\[ = \frac{(1 + \tan\theta)(-1 + \tan\theta)}{(1 - \tan\theta)(1 + \tan\theta)} = \frac{(\tan^2\theta - 1)}{1 - \tan^2\theta} = \boxed{-1} \]
\[ \boxed{-1} \]
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.