Vectors:
Step 1: Volume = $|\vec{a} \cdot (\vec{b} \times \vec{c})|$
First compute $\vec{b} \times \vec{c}$:
$ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \hat{i}((-1)(-1) - (1)(2)) - \hat{j}((1)(-1) - (1)(1)) + \hat{k}((1)(2) - (-1)(1)) \\ = \hat{i}(1 - 2) - \hat{j}(-1 - 1) + \hat{k}(2 + 1) = -\hat{i} + 2\hat{j} + 3\hat{k} $
Step 2: Compute dot product with $\vec{a}$:
$\vec{a} \cdot (\vec{b} \times \vec{c}) = (m)(-1) + (1)(2) + (1)(3) = -m + 2 + 3 = -m + 5$
Step 3: Volume = $| -m + 5 | = 4$
So, $|-m + 5| = 4 \Rightarrow -m + 5 = \pm 4$
✅ Final Answer: $\boxed{m = 1 \text{ or } 9}$
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.