Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



The value of m for which volume of the parallelepiped is 4 cubic units whose three edges are represented by a = mi + j + k, b = i – j + k, c = i + 2j –k is





Solution

Given: Volume of a parallelepiped formed by vectors $\vec{a}, \vec{b}, \vec{c}$ is 4 cubic units.

Vectors:

  • $\vec{a} = m\hat{i} + \hat{j} + \hat{k}$
  • $\vec{b} = \hat{i} - \hat{j} + \hat{k}$
  • $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$

Step 1: Volume = $|\vec{a} \cdot (\vec{b} \times \vec{c})|$

First compute $\vec{b} \times \vec{c}$:

$ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \hat{i}((-1)(-1) - (1)(2)) - \hat{j}((1)(-1) - (1)(1)) + \hat{k}((1)(2) - (-1)(1)) \\ = \hat{i}(1 - 2) - \hat{j}(-1 - 1) + \hat{k}(2 + 1) = -\hat{i} + 2\hat{j} + 3\hat{k} $

Step 2: Compute dot product with $\vec{a}$:

$\vec{a} \cdot (\vec{b} \times \vec{c}) = (m)(-1) + (1)(2) + (1)(3) = -m + 2 + 3 = -m + 5$

Step 3: Volume = $| -m + 5 | = 4$

So, $|-m + 5| = 4 \Rightarrow -m + 5 = \pm 4$

  • Case 1: $-m + 5 = 4 \Rightarrow m = 1$
  • Case 2: $-m + 5 = -4 \Rightarrow m = 9$

✅ Final Answer: $\boxed{m = 1 \text{ or } 9}$



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...