Given: \( \vec{a}, \vec{b} \) are unit vectors and
\( 2\vec{a} + \vec{b} = 3 \)
Take magnitude on both sides:
\( |2\vec{a} + \vec{b}| = 3 \Rightarrow |2\vec{a} + \vec{b}|^2 = 9 \)
Use identity:
\[ |2\vec{a} + \vec{b}|^2 = 4|\vec{a}|^2 + |\vec{b}|^2 + 4(\vec{a} \cdot \vec{b}) = 4 + 1 + 4(\vec{a} \cdot \vec{b}) = 5 + 4(\vec{a} \cdot \vec{b}) \]
Set equal to 9:
\[ 5 + 4(\vec{a} \cdot \vec{b}) = 9 \Rightarrow \vec{a} \cdot \vec{b} = 1 \Rightarrow \cos\theta = 1 \Rightarrow \theta = 0^\circ \]
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.