Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



If $\vec{a}=\hat{i}-\hat{k}$, $\vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}$ and $\vec{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}$, then $\begin{bmatrix}{\vec{a}} & {\vec{b}} & {\vec{c}}\end{bmatrix}$ depends on





Solution

Quick Solution

Given:

\( \vec{a} = \hat{i} - \hat{k}, \quad \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \quad \vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \)

Form the matrix:

\( M = \begin{bmatrix} 1 & x & y \\ 0 & 1 & x \\ -1 & 1 - x & 1 + x - y \end{bmatrix} \)

Find the determinant:

\( \det(M) = \begin{vmatrix} 1 & x & y \\ 0 & 1 & x \\ -1 & 1 - x & 1 + x - y \end{vmatrix} = 1 \)

Since the determinant is constant and non-zero, the vectors are linearly independent.

\( \boxed{\text{The matrix does not depend on } x \text{ or } y} \)



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...