Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Suppose $A_1,A_2,\ldots,A_{30}$ are 30 sets each with five elements and $B_1,B_2,B_3,\ldots,B_n$ are n sets (each with three elements) such that  $\bigcup ^{30}_{i=1}{{A}}_i={{\bigcup }}^n_{j=1}{{B}}_i=S\, $ and each element of S belongs to exactly ten of the $A_i$'s and exactly 9 of the $B^{\prime}_j$'s. Then $n=$





Solution

Let \(|S|=m\).

Count incidences via the \(A_i\): There are 30 sets each of size 5, so total memberships \(=30\times 5=150\). Each element of \(S\) lies in exactly 10 of the \(A_i\), so also \(= m\times 10\). Hence \(m=\dfrac{150}{10}=15\).

Count incidences via the \(B_j\): There are \(n\) sets each of size 3, so total memberships \(=n\times 3\). Each element of \(S\) lies in exactly 9 of the \(B_j\), so also \(= m\times 9 = 15\times 9=135\).

Thus \(n\times 3=135 \Rightarrow n=\dfrac{135}{3}=\boxed{45}.\)



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...