Qus : 2
Jamia Millia Islamia PYQ
2
Number of vectors of unit length perpendicular to
$\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$
and $\vec{b} = \hat{j} + \hat{k}$ is:
1
one 2
two 3
three 4
infinite Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ
Solution Vector perpendicular to both $\vec{a}$ and $\vec{b}$ is along $\vec{a} \times \vec{b}$.
$\vec{a} \times \vec{b} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 2 \\
0 & 1 & 1
\end{vmatrix}
= (\hat{i})(1 - 2) - (\hat{j})(2 - 0) + (\hat{k})(2 - 0)
= -\hat{i} - 2\hat{j} + 2\hat{k}$
Unit vector in this direction can be $\pm \dfrac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
→ There are **two** such unit vectors.
$\boxed{\text{Answer: (B) two}}$
Qus : 4
Jamia Millia Islamia PYQ
2
The number of vectors of unit length perpendicular to vectors $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{k} + \hat{j}$ is …
1
1 2
2 3
3 4
Infinite Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MCA 2016 PYQ
Solution $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{k} + \hat{j}$.
The vector perpendicular to both is $\vec{a} \times \vec{b}$.
$\vec{a} \times \vec{b} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 0 \\
0 & 1 & 1
\end{vmatrix}
= \hat{i}(1 - 0) - \hat{j}(1 - 0) + \hat{k}(1 - 0) = \hat{i} - \hat{j} + \hat{k}$.
Two unit vectors along $\pm(\hat{i} - \hat{j} + \hat{k})$ are possible.
Qus : 6
Jamia Millia Islamia PYQ
2
The vertices of a parallelogram $ABCD$ are $A(3,-1,2)$, $B(1,2,-4)$ and $C(-1,1,2)$. The fourth vertex $D$ is:
1
$(1,2,8)$ 2
$(1,-2,8)$ 3
$(-2,1,8)$
4
$(-2,-1,8)$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution In a parallelogram, $A+C=B+D \Rightarrow D=A+C-B$.
$D=(3,-1,2)+(-1,1,2)-(1,2,-4)=(1,-2,8)$.
Qus : 9
Jamia Millia Islamia PYQ
1
Distance between the two planes
$2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$ is:
1
$\dfrac{3}{2}$ units
2
$\dfrac{5}{2}$ units 3
$\dfrac{7}{2}$ units 4
$\dfrac{9}{2}$ units Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution Equations of planes:
$\pi_1: 2x + y + 2z = 8$
$\pi_2: 4x + 2y + 4z + 5 = 0$
Normalize the second plane by dividing by 2:
$\pi_2: 2x + y + 2z + \dfrac{5}{2} = 0$
Distance between parallel planes
$\dfrac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} =
\dfrac{|8 - (-\tfrac{5}{2})|}{\sqrt{2^2 + 1^2 + 2^2}} =
\dfrac{\tfrac{21}{2}}{\sqrt{9}} = \dfrac{3}{2}$ units.
[{"qus_id":"13535","year":"2024"},{"qus_id":"13864","year":"2021"},{"qus_id":"13865","year":"2021"},{"qus_id":"14043","year":"2019"},{"qus_id":"14065","year":"2019"},{"qus_id":"14066","year":"2019"},{"qus_id":"15093","year":"2018"},{"qus_id":"15163","year":"2017"},{"qus_id":"15301","year":"2016"},{"qus_id":"15302","year":"2016"}]