Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Vector PYQ


Jamia Millia Islamia PYQ
For any vector $\vec{a}$, the value of $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $\vec{a} = (a_1, a_2, a_3)$ $\vec{a} \times \hat{i} = (0, a_3, -a_2)$ → magnitude$^2 = a_3^2 + a_2^2$ $\vec{a} \times \hat{j} = (-a_3, 0, a_1)$ → magnitude$^2 = a_3^2 + a_1^2$ $\vec{a} \times \hat{k} = (a_2, -a_1, 0)$ → magnitude$^2 = a_2^2 + a_1^2$ Sum = $2(a_1^2 + a_2^2 + a_3^2) = 2a^2$ $\boxed{\text{Answer: (D) }2a^2}$

Jamia Millia Islamia PYQ
Number of vectors of unit length perpendicular to $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Vector perpendicular to both $\vec{a}$ and $\vec{b}$ is along $\vec{a} \times \vec{b}$. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (\hat{i})(1 - 2) - (\hat{j})(2 - 0) + (\hat{k})(2 - 0) = -\hat{i} - 2\hat{j} + 2\hat{k}$ Unit vector in this direction can be $\pm \dfrac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ → There are **two** such unit vectors. $\boxed{\text{Answer: (B) two}}$

Jamia Millia Islamia PYQ
Let $\vec{A} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{C} = -\hat{i} - \hat{j}$ be two vectors. Which of the following is the vector $\vec{B}$ such that $\vec{A} \times \vec{B} = \hat{k}$ and $\vec{A} \cdot \vec{B} = 1$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Using cross and dot product conditions, $\vec{B} = \hat{k}$.

Jamia Millia Islamia PYQ
The number of vectors of unit length perpendicular to vectors $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{k} + \hat{j}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{k} + \hat{j}$. The vector perpendicular to both is $\vec{a} \times \vec{b}$. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \hat{i}(1 - 0) - \hat{j}(1 - 0) + \hat{k}(1 - 0) = \hat{i} - \hat{j} + \hat{k}$. Two unit vectors along $\pm(\hat{i} - \hat{j} + \hat{k})$ are possible.

Jamia Millia Islamia PYQ
The angle between vectors $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$. Hence, angle between them is $180^{\circ}$.

Jamia Millia Islamia PYQ
The vertices of a parallelogram $ABCD$ are $A(3,-1,2)$, $B(1,2,-4)$ and $C(-1,1,2)$. The fourth vertex $D$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

In a parallelogram, $A+C=B+D \Rightarrow D=A+C-B$. $D=(3,-1,2)+(-1,1,2)-(1,2,-4)=(1,-2,8)$.

Jamia Millia Islamia PYQ
The scalar product of $(5i + j - 3k)$ and $(3i - 4j + 7k)$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Dot product $= (5)(3) + (1)(-4) + (-3)(7)$ $= 15 - 4 - 21 = -10$ Wait — recheck: $15 - 4 - 21 = -10$ (not -15). Let’s verify carefully — if given answer key shows B (-15), check question once more: If second vector was $(3i - 4j + 7k)$ indeed, then $5×3 = 15$, $1×(-4) = -4$, $(-3)×7 = -21$, total = $-10$. So true answer is $-10$, though the paper marks B ($-15$). Maybe a misprint.

Jamia Millia Islamia PYQ
If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Given $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$. Square both sides: $(\vec{a} + \vec{b})\cdot(\vec{a} + \vec{b}) = (\vec{a} - \vec{b})\cdot(\vec{a} - \vec{b})$ $\Rightarrow a^2 + b^2 + 2\vec{a}\cdot\vec{b} = a^2 + b^2 - 2\vec{a}\cdot\vec{b}$ $\Rightarrow \vec{a}\cdot\vec{b} = 0.$ Thus, $\vec{a}$ is perpendicular to $\vec{b}$.

Jamia Millia Islamia PYQ
Distance between the two planes $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Equations of planes: $\pi_1: 2x + y + 2z = 8$ $\pi_2: 4x + 2y + 4z + 5 = 0$ Normalize the second plane by dividing by 2: $\pi_2: 2x + y + 2z + \dfrac{5}{2} = 0$ Distance between parallel planes $\dfrac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} = \dfrac{|8 - (-\tfrac{5}{2})|}{\sqrt{2^2 + 1^2 + 2^2}} = \dfrac{\tfrac{21}{2}}{\sqrt{9}} = \dfrac{3}{2}$ units.

Jamia Millia Islamia PYQ
Dot product of two vectors $\vec{a}$ and $\vec{b}$ is termed as





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

$\vec{a}\cdot\vec{b}$ is inner product.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...