Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Trigonometrical Function PYQ


Jamia Millia Islamia PYQ
Period of $3\sec x/3$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Period of $\sec kx$ = $\dfrac{2\pi}{k}$ → here $k = 1/3$. Hence period = $6\pi$.

Jamia Millia Islamia PYQ
What will be the value of $f(x) = (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x$ ?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

$f(x) = (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x$ $= \sin 3x \sin x + \sin^2 x + \cos 3x \cos x - \cos^2 x$ Using identity $\cos A \cos B + \sin A \sin B = \cos(A - B)$: $f(x) = \cos(3x - x) + (\sin^2 x - \cos^2 x)$ $= \cos 2x - \cos 2x = 0$

Jamia Millia Islamia PYQ
Period of the function $f(x) = \cos\left(\dfrac{2x}{3}\right) - \sin\left(\dfrac{4x}{5}\right)$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Period of $\cos(\dfrac{2x}{3}) = \dfrac{2\pi}{(2/3)} = 3\pi$. Period of $\sin(\dfrac{4x}{5}) = \dfrac{2\pi}{(4/5)} = \dfrac{5\pi}{2}.$ L.C.M. of $3\pi$ and $\dfrac{5\pi}{2}$ = $15\pi$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...