Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Straight Line PYQ


Jamia Millia Islamia PYQ
Coordinates of midpoint of line joining two points (16, 4) and (36, 6) are





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Midpoint = ((16+36)/2, (4+6)/2) = (26, 5).

Jamia Millia Islamia PYQ
The equation of straight line passing through (3, 2) and perpendicular to $y = x$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Slope of $y = x$ is 1 → perpendicular slope = −1. Equation: $y - 2 = -1(x - 3) \Rightarrow x + y = 5$.

Jamia Millia Islamia PYQ
Specifying a straight line, how many geometrical parameters should be known?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

A line is determined by two parameters — slope and intercept (or two points).

Jamia Millia Islamia PYQ
A point equidistant from lines $4x + 3y + 10 = 0$, $5x - 12y + 26 = 0$, and $7x + 24y - 50 = 0$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Solving equal distance condition gives point (1,1).

Jamia Millia Islamia PYQ
The coordinates of the foot of perpendicular from the point $(2,3)$ on the line $y = 3x + 4$ is given by:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Given line: $y = 3x + 4 \Rightarrow 3x - y + 4 = 0$ For point $(x_1, y_1) = (2, 3)$, Foot of perpendicular $(x, y)$ is given by: $x = \dfrac{b(bx_1 - ay_1) - ac}{a^2 + b^2}$ and $y = \dfrac{a(-bx_1 + ay_1) - bc}{a^2 + b^2}$ Here $a=3, b=-1, c=4$. So, $x = \dfrac{(-1)((-1)(2) - 3(3)) - (3)(4)}{3^2 + (-1)^2} = \dfrac{1(-11) - 12}{10} = \dfrac{37}{10}$ $y = \dfrac{3(-(-1)(2) + 3(3)) - (-1)(4)}{10} = \dfrac{1}{10}$ $\boxed{\text{Answer: (A) }\left(\dfrac{37}{10}, \dfrac{1}{10}\right)}$

Jamia Millia Islamia PYQ
Equations of diagonals of the square formed by the lines $x = 0,\ y = 0,\ x = 1$ and $y = 1$ are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Vertices of square: $(0,0), (1,0), (0,1), (1,1)$ Diagonals: $y = x$ and $y + x = 1$ $\boxed{\text{Answer: (A) }y=x,\ y+x=1}$

Jamia Millia Islamia PYQ
A point $P$ on the $y$-axis is equidistant from the points $A(-5,4)$ and $B(3,-2)$. Its coordinate is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $P(0, y)$. $\sqrt{(0+5)^2+(y-4)^2} = \sqrt{(0-3)^2+(y+2)^2}$ $\Rightarrow 25 + y^2 - 8y + 16 = 9 + y^2 + 4y + 4$ $\Rightarrow 12y = 28 \Rightarrow y = \tfrac{7}{3}.$

Jamia Millia Islamia PYQ
What is the value of $x$ for which the points $(x,-1)$, $(2,1)$ and $(4,5)$ are collinear?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

For collinearity, slopes must be equal: $\dfrac{1-(-1)}{2-x} = \dfrac{5-1}{4-2} \Rightarrow \dfrac{2}{2-x} = 2 \Rightarrow 1 = 2 - x \Rightarrow x = 1.$

Jamia Millia Islamia PYQ
For which value of $k$, the line $(k-3)x-(4-k^2)y+k^2-7k+6=0$ will be parallel to the $x$-axis?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

A line parallel to the $x$-axis has no $x$-term ⇒ coefficient of $x$ must be $0$: $k-3=0 \Rightarrow k=3$. Also need coefficient of $y \ne 0$: $-(4-k^2)\ne 0 \Rightarrow k\ne \pm 2$ (satisfied).

Jamia Millia Islamia PYQ
If the point $P(x,y)$ is equidistant from $A(a+b,\,b-a)$ and $B(a-b,\,a+b)$, then …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Set distances equal and square: $(x-a-b)^{2}+(y-b+a)^{2}=(x-a+b)^{2}+(y-a-b)^{2}$. Simplify ⇒ $-4b(x-a)+4a(y-b)=0 \Rightarrow bx=ay$.

Jamia Millia Islamia PYQ
The number of lines that are parallel to $2x+6y+7=0$ and have an intercept of length $10$ between the coordinate axes is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Parallel lines: $2x+6y+c=0$. Intercept points: $( -\tfrac{c}{2},0)$ and $(0,-\tfrac{c}{6})$. Distance between them $=\sqrt{\left(\tfrac{c}{2}\right)^{2}+\left(\tfrac{c}{6}\right)^{2}} =|c|\,\dfrac{\sqrt{10}}{6}$. Set equal to $10$ ⇒ $|c|=6\sqrt{10}$ ⇒ two values $c=\pm6\sqrt{10}$.

Jamia Millia Islamia PYQ
The four lines $ax\pm by\pm c=0$ enclose a …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

They form two pairs of parallel lines with slopes $\pm \dfrac{a}{b}$ (not necessarily perpendicular). Under unequal scaling they form a rectangle (a square only if $a=b$).

Jamia Millia Islamia PYQ
The area bounded by the lines $y=|x|-1$ and $y=-|x|+1$ is …… square unit.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

Vertices are $(0,1)$, $(1,0)$, $(0,-1)$, $(-1,0)$ — a rhombus with diagonals $2$ and $2$. Area $=\dfrac{d_{1}d_{2}}{2}=\dfrac{2\times2}{2}=2$.

Jamia Millia Islamia PYQ
The orthocentre of the triangle formed by $(0,0)$, $(4,0)$ and $(3,4)$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Vertices: $A(0,0),\ B(4,0),\ C(3,4)$ Slope of $BC = \dfrac{4 - 0}{3 - 4} = -4$ Equation of altitude from $A$: perpendicular to BC → slope $\dfrac{1}{4}$ $\Rightarrow y = \dfrac{1}{4}x$ … (1) Slope of $AC = \dfrac{4 - 0}{3 - 0} = \dfrac{4}{3}$ Equation of altitude from $B$: perpendicular slope $-\dfrac{3}{4}$, passes through $(4,0)$ $\Rightarrow y - 0 = -\dfrac{3}{4}(x - 4)$ $\Rightarrow y = -\dfrac{3}{4}x + 3$ … (2) Solving (1) and (2): $\dfrac{x}{4} = -\dfrac{3x}{4} + 3 \Rightarrow x = 3,\ y = \dfrac{3}{4}$

Jamia Millia Islamia PYQ
A ray of light passing through the point $(1,2)$ reflects on the $X$–axis at point $A$, and the reflected ray passes through the point $(5,3)$. The coordinates of $A$ are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let $A = (x,0)$. Slope of incident ray $= \dfrac{2 - 0}{1 - x} = \dfrac{2}{1 - x}$ Slope of reflected ray $= \dfrac{3 - 0}{5 - x} = \dfrac{3}{5 - x}$ For reflection from $X$–axis: angle of incidence = angle of reflection. Hence, their slopes are negatives of each other: $\dfrac{2}{1 - x} = -\dfrac{3}{5 - x}$ $\Rightarrow 2(5 - x) = -3(1 - x)$ $\Rightarrow 10 - 2x = -3 + 3x$ $\Rightarrow 5x = 13 \Rightarrow x = \dfrac{13}{5}$ Thus, $A\left(\dfrac{13}{5}, 0\right)$.

Jamia Millia Islamia PYQ
Consider a line passing through $(1,2)$ and $(4,8)$. The gradient of this line is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

For a set of $n$ elements, power set size $= 2^n = 2^3 = 8.$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...