Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Parabola PYQ


Jamia Millia Islamia PYQ
If the chord of contact of tangents from a point $P$ to the parabola $y^2 = 4 a x$ touches the parabola $x^2 = 4 b y$, then the locus of $P$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Let the coordinates of $P$ be $(x_1, y_1)$. Equation of chord of contact to $y^2 = 4a x$ is $T_1 = 0 \Rightarrow y y_1 = 2a(x + x_1).$ This line touches $x^2 = 4b y$. Substitute $y = \dfrac{x^2}{4b}$ in the line equation: $\dfrac{x^2 y_1}{4b} = 2a(x + x_1)$ $\Rightarrow y_1 x^2 - 8abx - 8abx_1 = 0.$ For tangency, discriminant $= 0$: $(8ab)^2 - 4y_1(-8abx_1) = 0$ $\Rightarrow 64a^2b^2 + 32abx_1 y_1 = 0$ $\Rightarrow 2x_1 y_1 + 4ab = 0 \Rightarrow x_1 y_1 = -2ab.$ Thus, locus of $P$ is $x y = -2ab$, which represents a **hyperbola**.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...