Let the coordinates of $P$ be $(x_1, y_1)$.
Equation of chord of contact to $y^2 = 4a x$ is
$T_1 = 0 \Rightarrow y y_1 = 2a(x + x_1).$
This line touches $x^2 = 4b y$.
Substitute $y = \dfrac{x^2}{4b}$ in the line equation:
$\dfrac{x^2 y_1}{4b} = 2a(x + x_1)$
$\Rightarrow y_1 x^2 - 8abx - 8abx_1 = 0.$
For tangency, discriminant $= 0$:
$(8ab)^2 - 4y_1(-8abx_1) = 0$
$\Rightarrow 64a^2b^2 + 32abx_1 y_1 = 0$
$\Rightarrow 2x_1 y_1 + 4ab = 0 \Rightarrow x_1 y_1 = -2ab.$
Thus, locus of $P$ is $x y = -2ab$,
which represents a **hyperbola**.
[{"qus_id":"14041","year":"2019"}]
Jamia Millia Islamia
Online Test Series, Information About Examination, Syllabus, Notification and More.